【発表募集】第121回人工知能基本問題研究会(SIG-FPAI),2022/09/28-29 ハイブリッド,2022/07/29 締切


人工知能学会 第121回人工知能基本問題研究会(SIG-FPAI) 発表募集

開催日

2022年9月28日(水)・29日(木)

会場

ハイブリッド開催
オンライン会場はZoom、リアル会場は国立情報学研究所(学術総合センター)を予定しています(人数制限あり)。
https://www.nii.ac.jp/about/access/

※参加方法は参加申込者に個別にご案内いたします.
※新型コロナウイルスの感染状況によっては、完全オンライン開催へと変更になる可能性があります。

テーマ

特集「データサイエンスと人工知能」および一般

開催趣旨

深層学習に代表される人工知能技術の発展によって、その応用範囲が飛躍的に広がり、データサイエンスとして他分野への適用や融合が進んでいます。それとともに、信頼性や説明性など、核となる人工知能技術を取り巻く様々な側面が注目されるようになってきました。そこで今回の研究会では、データサイエンスへの適用や社会実装を見据えた人工知能の基礎技術に関する幅広い発表を募集します。また、これに限らず、人工知能の基本問題に関する理論や応用の発表も幅広く募集します。

招待講演

招待講演1:瀬々 潤(株式会社ヒューマノーム研究所)
タイトル:気軽に使える機械学習ツールで目指す、データやモデルが通貨となる世界
概要:
深層学習が風穴をあけた人工知能ブームが始まって、10年近くになる。
依然、AIに関するニュースが新聞を賑わしており、機械学習という単語も一般的になった。
このAI・機械学習が業務効率化による人員削減や、盗難などの犯罪の検出など、
人が悲しむ方向での活用も多く、生活が楽しくなる方向で活用できるには
どうしたらよいかと考えている。私としての一つの仮説は、
データやモデルが流通し、気軽に先端の研究結果を、様々な人が使える世界になれば、
データサイエンス・機械学習の楽しさが広まって、豊かな生活・社会を創造してもらえるのではないかというものである。
その仮説を立証すべく、現在、誰でも気楽に使える機械学習ツールである
Humanome EyesとCatDataを開発し、展開している。
本講演では、これらのツールの生い立ちとともに、本ツールが目指す研究の社会実装像を提示したい。

招待講演2:藤井 慶輔(名古屋大学)
タイトル:集団運動における機械学習を用いたデータ科学
概要:
構成要素が相互作用し複雑な動きを見せる集団運動を理解することは、物理学や生物学、人間行動科学などにおいて重要な問題である。しかし、実世界の生物集団などでは、その複雑な運動の背後にある規則が不明な場合が多い。そのような場合には、計測されたデータから集団運動のメカニズムを推定・理解するという方法が有効である。本講演では、複数種の生物集団の移動軌跡から相互作用の規則を、動物行動学の理論モデルとデータから推定する機械学習手法や、生物集団モデル・自動運転シミュレータ・集団スポーツと異なる領域の集団運動において時変介入効果を推定する因果推論手法などを紹介する。集団運動における機械学習を用いたデータ科学に向けての今後の展望に関しても紹介する予定である。

発表申込期限

2022年7月29日 (金) 23:59 JST

発表申込先

以下の人工知能学会発表申込フォームより発表申込を行ってください.
https://www.ai-gakkai.or.jp/sig-system/sigusers/presenter_add/fpai/121
リアル会場でのご発表をご希望される場合は、備考欄に「リアル会場での参加を希望」とのご記入をお願いいたします。

原稿提出期限

2022年8月19日 (金) 23:59JST
※予稿集作成の都合上,締切は延長できません.締切厳守でお願いいたします.

一般発表はA4用紙原則6枚以内です.
スタイルファイル・サンプル等は以下からダウンロードしてください.
http://www.ai-gakkai.or.jp/sig/sig-style/
原稿の提出については,提出期限までに発表申込内容編集フォームから PDF のアップロードをお願いいたします.
発表申込み後の確認メールに,フォームへのアクセス用 URLが記載されています.

参加費

当研究会の聴講は無料です.

研究会資料

研究会資料は発表の有無に関わらず電子版を購入頂けます.
なお,人工知能学会の学生会員は無料です.
また,それ以外の会員の方は研究会登録による年間購読割引があります.
電子版購入:https://jsaioffice.stores.jp/
研究会登録:https://www.ai-gakkai.or.jp/sig/announce/sig-registeration/

運営メンバー

主査: 石畠 正和
幹事: 杉山 麿人、栗田 和宏、小島 諒介、鈴木 浩史、伝住 周平
担当幹事: 杉山 麿人
連絡先アドレス: kanji[at]sig-fpai.org([at]を@に置き換えてください)

————————————————————————

人工知能学会の研究会資料(第一種)の扱いについて

人工知能学会第一種研究会に投稿された研究会資料は紙冊子として発行されると同時に,
学会事務局で資料ID(※1)を付与した上で学会文献提供サイト「J-STAGE上のPDFファイルとして掲載されます.
SIG-FPAIはからご覧いただけます.
J-STAGE: https://www.jstage.jst.go.jp/browse/-char/ja
SIG-FPAI: https://www.jstage.jst.go.jp/browse/jsaifpai/-char/ja

発行日(※2)から一年間(エンバーゴ期間)は,PDF閲覧時に認証を求められますが,研究会登録メンバーは無料で閲覧可能です.
認証のための購読者番号やパスワードはオンライン会員情報管理システムにログインし,「学会からのお知らせ」にてご確認下さい.
なお,エンバーゴ期間中,研究会登録メンバー以外の方は,storesにて購入いただけます.
会員情報管理システム: https://www.e-naf.jp/JSAI/member/login.php
stores: https://jsaioffice.stores.jp/

(※1)研究会資料ID付与規則の変更(2021年4月)
研究会資料ID(論文ID)の付与ルールを下記のように統一しました.

– 資料ID:[研究会名略称]-[開催回(3桁)]-[発表順(2桁)],例:SIG-FPAI-021-03
– 開催回:研究会の通算の開催回数,例:21
– 発表順:当該開催回での論文の発表順,例:3

(※2)紙媒体の奥付に記載された発行日