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1. Introduction

Recent advances in domain-independent planning have greatly
enhanced their capabilities. However, planning problems need to
be provided to the planner in a structured, symbolic representa-
tion such as PDDL [McDermott 00], and in general, such symbolic
models need to be provided by a human, either directly in a mod-
eling language such as PDDL, or via a compiler which transforms
some other symbolic problem representation into PDDL. This re-
sults in the knowledge-acquisition bottleneck, where the modeling
step is sometimes the bottleneck in the problem solving cycle. In
addition, the requirement for symbolic input poses a significant
obstacle to applying planning in new, unforeseen situations where
no human is available to create such a model or a generator, e.g.,
autonomous spacecraft exploration. In particular this first requires
generating symbols from raw sensor input, i.e., the symbol ground-
ing problem [Steels 08].

Recently, significant advances have been made in neural net-
work (NN) deep learning approaches for perceptually-based cog-
nitive tasks including image classification [Deng 09] and object
recognition [Ren 15], as well as NN-based problem-solving sys-
tems for problem solving [Mnih 15, Graves 16]. However, the cur-
rent state-of-the-art in pure NN-based systems do not yet provide
guarantees provided by symbolic planning systems, such as deter-
ministic completeness and solution optimality.

Using a NN-based perceptual system to automatically provide
input models for domain-independent planners could greatly ex-
pand the applicability of planning technology and offer the benefits
of both paradigms. We consider the problem of robustly, automat-
ically bridging the gap between such subsymbolic representations
and the symbolic representations required by domain-independent
planners.

Fig. 1 (left) shows a scrambled, 3x3 tiled version of the the pho-
tograph on the right, i.e., an image-based instance of the 8-puzzle.
We seek a domain-independent system which, given only a set of
unlabeled images showing the valid moves for this image-based
puzzle, finds an optimal solution to the puzzle, without prior as-
sumptions/knowledge e.g., “‘sliding objects”, “tile arrangement”.

We propose Latent-space Planner (LatPlan), an integrated ar-
chitecture which uses NN-based image processing to completely
automatically generate a propositional, symbolic problem repre-
sentation.
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Figure 1: An image-based 8-puzzle.
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Figure 2: Step 1: Train the State Autoencoder by minimizing the
sum of the reconstruction loss (binary cross-entropy between the
input and the output) and the variational loss of Gumbel-Softmax
(KL divergence between the actual latent distribution and the ran-
dom categorical distribution as the target).

2. LatPlan: System Architecture

This section describe the LatPlan architecture and the current
implementation, LatPlanca. LatPlan works in 3 phases. In Phase
1 (symbol-grounding, Sec.2.1), a State AutoEncoder (SAE) pro-
viding a bidirectional mapping between raw data (e.g., images)**
and symbols is learned (unsupervised) from a set of unlabeled im-
ages of representative states. In Phase 2 (action model generation,
Sec. 2.2), the operators available in the domain is generated from
a set of pairs of unlabeled images, and a PDDL domain model is
generated. In Phase 3 (planning, Sec. 2.3), a planning problem in-
stance is input as a pair of images (i, g) where 7 shows an inifial
state and g shows a goal state. These are converted to symbolic
form using the SAE, and the problem is solved by the symbolic
planner. For example, an 8-puzzle problem instance in our sys-
tem consists of an image of the start (scrambled) configuration of
the puzzle (¢), and an image of the solved state (g). Finally, the
symbolic, latent-space plan is converted to a sequence of human-
comprehensible images visualizing the plan (Sec. 2.4).

*1  Although the LatPlan architecture can, in principle, be applied to vari-
ous unstructured data input including images, texts or low-level sensors,
in the rest of the paper we refer to “images” for simplicity and also be-

cause the current implementation is image-based.



2.1 Symbol Grounding with a State Autoencoder

The State Autoencoder (SAE) provides a bidirectional mapping
between images and a symbolic representation.

An AutoEncoder (AE) is a type of Feed-Forward Network
(FFN) that uses unsupervised learning to produce an image that
matches the input [Hinton 06]. The intermediate layer is said to
have a Latent Representation of the input and is considered to
be performing data compression. AEs are commonly used for
pretraining a neural network. A Variational AutoEncoder (VAE)
[Kingma 13] is a type of AE that forces the latent layer (the most
compressed layer in the AE) to follow a certain distribution (e.g.,
Gaussian) for given input images. Since the target random dis-
tribution prevents backpropagating the gradient, most VAE im-
plementations use reparametrization tricks, which decompose the
target distribution into a differentiable distribution and a purely
random distribution that does not require the gradient. For exam-
ple, the Gaussian distribution N (o, 1) can be decomposed into
u+oN(1,0).

Gumbel-Softmax (GS) reparametrization is a technique for en-
forcing a categorical distribution on a particular layer of the neural
network. [Jang 17]. A “temperature” parameter 7, which controls
the magnitude of approximation to the categorical distribution, is
decreased by an annealing schedule 7 <— max(0.1, exp(—rt))
where ¢ is the current training epoch and r is an annealing ratio.
Using a GS layer in the network forces the layer to converge to a
discrete one-hot vector when the temperature approaches near 0.

The SAE is comprised of multilayer perceptrons combined with
Dropouts and Batch Normalization in both the encoder and the
decoder networks, with a GS layer in between. The input to the
GS layer is the flat, last layer of the encoder network. The output is
an (N, M) matrix where N is the number of categorical variables
and M is the number of categories.

Our key observation is that these categorical variables can be
used directly as propositional symbols by a symbolic reasoning
system, i.e., this provides a solution to the symbol grounding prob-
lem in our architecture. We obtain the propositional representa-
tion by specifying M = 2, effectively obtaining N propositional
state variables. The trained SAE provides bidirectional mapping
between the raw inputs (subsymbolic representation) to and from
their symbolic representations:

e b = Encode(r) maps an image r to a boolean vector b.
e 7 = Decode(b) maps a boolean vector b to an image 7.

Encode(r) maps raw input 7 to a symbolic representation by feed-
ing the raw input to the encoder network, extract the activation in
the GS layer, and take the first row in the NV X 2 matrix, resulting in
a binary vector of length N. Similarly, Decode(b) maps a binary
vector b back to an image by concatenating b and its complement
b to obtain a N x 2 matrix and feeding it to the decoder network.

It is not sufficient to simply use traditional activation functions
such as sigmoid or softmax and round the continuous activation
values in the latent layer to obtain discrete 0/1 values. As explained
in Sec.2.4, we need to map the symbolic plan back to images,
so we need a decoding network trained for 0/1 values approxi-
mated by a smooth function, e.g., GS or similar approach such as
[Maddison 17]. A rounding-based scheme would be unable to re-
store the images from the latent layer because the decoder network
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Figure 3: We use the learned State AutoEncoder (Sec.2.1) to con-
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vert pairs of images (pre, post) first to symbolic ground actions
and then to a PDDL domain (Sec. 2.2) We also encode initial and
goal state images into a symbolic ground actions and then a PDDL
problem. A classical planner finds the symbolic solution plan. Fi-
nally, intermediate states in the plan are decoded back to a human-
comprehensible image sequence.

is trained using continuous activation values. Also, representing
the rounding operation as a layer of the network is infeasible be-
cause rounding is non-differentiable, precluding backpropagation-
based training of the network.

In some domains, an SAE trained on a small fraction of the pos-
sible states successfully generalizes so that it can Encode and
Decode every possible state in that domain. In all our experi-
ments below, on each domain, we train the SAE using randomly
selected images from the domain. For example, on the 8-puzzle,
the SAE trained on 12000 randomly generated configurations out
of 362880 possible configurations is used by the domain model
generator (Sec.2.2) to Encode every 8-puzzle state.

2.2 Domain Model Generation

The model generator takes as input a trained SAE, and a set R
contains pairs of raw images. In each image pair (pre;, post;) €
R, pre; and post; are images representing the state of the world
before and after some action a; is executed, respectively. In each
ground action image pair, the “action” is implied by the differ-
ence between pre; and post;. The output of the model generator
is a PDDL domain file for a grounded unit-cost STRIPS planning
problem.

For each (pre; post;) € R we apply the learned SAE to pre;
and post; to obtain (Encode(pre;), Encode(post;)), the sym-
bolic representations (latent space vectors) of the state before and
after action a; is executed. This results in a set of symbolic ground
action instances A.

Ideally, a model generation component would induce a com-
plete action model from a limited set of symbolic ground ac-
tion instances. However, action model learning from a limited
set of action instances is a nontrivial area of active research
[Konidaris 14, Mourdo 12, Yang 07, Celorrio 12]. Instead, the cur-
rent implementation LatPlana generates a model based on all
ground actions, i.e., R contains image pairs representing all ground
actions that are possible in this domain, so A (generated by apply-
ing the SAE to all elements of R) contains all symbolic ground
actions possible in the domain. In the experiments Sec. 3., we gen-
erate image pairs for all ground actions using an external image
generator. It is important to note that while R contains all possi-



ble actions, R is not used for training the SAE. As explained in
Sec. 2.1, the SAE is trained using at most 12000 images while the
entire state space is much larger.

LatPlana compiles A directly into a PDDL model as follows.
For each action (Encode(pre;), Encode(post;)) € A, each bit
bj(1 < 7 < N) in these boolean vectors is mapped to propo-
sitions (bj-true) and (bj-false) when the encoded value
is 1 and O (resp.). Encode(pre;) is directly used as the precon-
ditions of action a;. The add/delete effects of action ¢ are com-
puted by taking the bitwise difference between Encode(pre;) and
Encode(post;). For example, when b; changes from 1 to 0, it
compiles into (and (bj-false) (bj-true))).

The initial and the goal states are similarly created by applying
the SAE to the initial and goal images.

2.3 Planning with an Off-the-Shelf Planner
The PDDL instance generated in the previous step can be

(not

solved by an off-the-shelf planner. LatPlana uses the Fast Down-
ward planner [Helmert 06]. However, on the models generated by
LatPlanc, the invariant detection routines in the Fast Downward
PDDL to SAS translator (translate.py) became a bottleneck, so we
wrote a trivial, replacement PDDL to SAS converter without the
invariant detection. LatPlan inherits all of the search-related prop-
erties of the planner which is used. For example, if the planner is
complete and optimal, LatPlan will find an optimal plan for the
given plan (if one exists), with respect to the portion of the state-
space graph captured by the acquired model.

2.4 Visualizing the Plans

Since the actions comprising the plan are SAE-generated latent
bit vectors, the “meaning” of each symbol (and thus the plan) is
not necessarily clear to a human observer. However, we can ob-
tain a step-by-step visualization of the world (images) as the plan
is executed by starting with the latent state representation of the
initial state, applying (simulating) actions step-by-step (according
to the PDDL model acquired above) and Decode’ing the latent bit
vectors for each intermediate state to images using the SAE.

3. Experimental Evaluation

All of the SAE networks used in the evaluation have the same
network topology except the input layer which should fit the size
of the input images. They are implemented using TensorFlow
and Keras and consist of the following layers: [Input, Gaussian-
Noise(0.1), fc(4000), relu, bn, dropout(0.4), fc(4000), relu, bn,
dropout(0.4), fc(49x2), GumbelSoftmax, dropout(0.4), fc(4000),
relu, bn, dropout(0.4), fc(4000), relu, bn, dropout(0.4), fc(znput),
sigmoid]. Here, fc = fully connected layer, bn = Batch Normaliza-
tion, and tensors are reshaped accordingly. The last layers can be
replaced with [fc(input x 2), GumbelSoftmax, TakeFirstRow] for
better reconstruction when we can assume that the input image is
binarized. The network is trained to minimize the sum of the varia-
tional loss and the reconstruction loss (binary cross-entropy) using
Adam optimizer (1r:0.001) for 1000 epochs.

The latent layer has 49 bits, which sufficiently covers the total
number of states in any of the problems that are used in the fol-
lowing experiments. This could be reduced for each domain (made
more compact) with further engineering.

MNIST 8-puzzle This is an image-based version of the 8-
puzzle, where tiles contain hand-written digits (0-9) from the

“’H’n’!»l’- “mnu!.

Figure 4: Output of solving 4x4 LightsOut (left) and its binarized
result (right). Although the goal state shows two blurred switches,
they have low values (around 0.3) and disappear in the binarized
image.

MNIST database [LeCun 98]. Each digit is shrunk to 14x14 pixels,
so each state of the puzzle is a 42x42 image. Training takes about
40 minutes with 1000 epochs on a single NVIDIA GTX-1070.

Scrambled Photograph 8-puzzle To show that LatPlan does
not rely on cleanly separated objects, we solve 8-puzzles generated
by cutting and scrambling real photographs (similar to sliding tile
puzzle toys sold in stores).
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Towers of Hanoi (ToH) Disks of various sizes must be moved
from one peg to another, with the constraint that a larger disk can
never be placed on top of a smaller disk. We generated the training
and planning inputs for this task, with 3 and 4 disks. Each input
image has a dimension of 24 x 122 and 32 x 146 (resp.). Due to
the smaller number of states, we used images of all states as the
training input.

1T Result of solving 3-disk Tower of Hanoi with the default network parameters.

LightsOut A video game where a grid of lights is in some
on/off configuration (4: On), and pressing a light toggles its state
(On/Off) as well as the state of all of its neighbors. The goal is
all lights Off. Unlike the 8-puzzle where each move affects only
two adjacent tiles, a single operator in 4x4 LightsOut can simul-
taneously flip 5/16 locations. Also, unlike 8-puzzle and ToH, the
LightsOut game allows some “objects” (lights) to disappear. This
demonstrates that LatPlan is not limited to domains with highly
local effects and static objects.

Twisted LightsOut To show that LatPlan does not rely on rect-
angular regions, we demonstrate its result on “Twisted LightsOut”,
a distorted version of the game where the original LightsOut image
is twisted around the center. Unlike previous domains, the input
images are not binarized.
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Robustness to Noisy Input We show the robustness of the sys-
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tem against the input noise. We corrupted the initial/goal state in-
puts by adding Gaussian or salt noise, as shown in Fig. 5. The sys-
tem is robust enough to successfully solve the problem, because
our SAE is a Denoising Autoencoder [Vincent 08].

8puzzle
+N(,0.3)

Twisted LightsOut

Twisted LightsOut
~+N(0,0.3) +salt(0.06)
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Figure 5: SAE robustness vs noise: Corrupted initial state image r
and its reconstruction Decode(Encode(r)). Images are corrupted
by Gaussian noise of o up to 0.3 for both problems, and by salt
noise up to p = 0.06 for Twisted LightsOut.

4. Discussion and Conclusion

We proposed LatPlan, an integrated architecture for domain
model acquisition and planning which, given only a set of un-
labeled images and no prior knowledge, generates a classical
planning problem model, solves it with a symbolic planner,
and presents the resulting plan as a human-comprehensible se-
quence of images. We demonstrated its feasibility using image-
based versions of planning/state-space-search benchmark prob-
lems (8-puzzle, Towers of Hanoi, Lights Out). The key techni-
cal contribution is the SAE, which leverages the Gumbel-Softmax
reparametrization technique [Jang 17] and learns (unsupervised)
a bidirectional mapping between raw images and a proposi-
tional representation usable by symbolic planners. For example, as
shown in Sec. 3., on the MNIST 8-puzzle, the “gist” of 42x42 train-
ing images are compressed into 49-bit representations that capture
the essence of the images which is robust to noise.

Aside from the key assumptions that (1) the domain can be mod-
eled and solved as a classical planning problem, and (2) the do-
main can be correctly inferred from the given training images, we
avoid assumptions about the input domain. Thus, we have shown
that domains with significantly different characteristics can all be
solved by the same system without further engineering. However,
as a proof-of-concept first implementation, it has significant limi-
tations to be addressed in future work.

For example, the current LatPlana domain model generator
doesn’t perform action model learning/induction from a small
set of sample actions, and essentially constructs an explicit state
space graph based on action image pairs for all ground actions
in the domain. Incorporating action model learning [Konidaris 14,
Mourdo 12, Yang 07] is an important direction for future work.

Although we showed that LatPlana: works on several kinds of
images, we do not claim that the SAE works robustly on all im-
ages. Making a truly robust autoencoder is not a problem unique
to LatPlan, but rather, a fundamental problem in deep learning. A
contribution of this paper is the demonstration that it is possible to
leverage some existing deep learning techniques quite effectively
in an integrated learning/planning system, and future work will
seek to continue leveraging further improvements.
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