
Characterization of a Tree Mapping Algorithm

for Tree-to-Tree Transducer Induction

Pascual Martı́nez-Gómez1 Yusuke Miyao1,2,3

1Artificial Intelligence Research Center, AIST
2National Institute of Informatics and JST, PRESTO

3The Graduate University for Advanced Studies (SOKENDAI)

We characterize a tree mapping search space in terms of the tree fragment depth and number of variables,
which are parameters of the resulting tree transducer grammar. We show how such characterization explains
the trade-off between computational complexity and tree transducer expressivity. We evaluate our induced tree
transducers on a Question-Answering task, quantifying accuracy and average tree mapping time as a function of
our parameterization.

1. Introduction and Related Work

Tree-to-tree transducers are formal and well-studied mod-

els [Rounds, 1970, Thatcher, 1970] that describe the relationship

between two trees (see [Knight and Graehl, 2005] for an

overview). These models have been used to great success in mul-

tiple applications for natural language that require tree transfor-

mations, such as machine translation [Knight and Graehl, 2005],

text summarization [Cohn and Lapata, 2009], question an-

swering [Jones et al., 2012], paraphrasing and textual entail-

ment [Wu, 2005]. However, inducing a tree transducer is difficult

when the number of example tree pairs is small and the language

variability is large.

[Martı́nez-Gómez and Miyao, 2016] designed a generalized

tree mapping algorithm and a procedure to extract rules from pairs

of trees, allowing the application of these models to a Question-

Answering (QA) task over a large Knowledge Base. In this pa-

per, we formally characterize the search space of the tree mapping

algorithm and evaluate the expressivity of the resulting tree trans-

ducer in terms of QA accuracy. Our key result is a parameteriza-

tion that allows to easily trade model expressivity by accuracy and

that can be useful in other tree-to-tree transformation tasks.

2. Methodology

Following [Graehl and Knight, 2004], we define a tree trans-

ducer as a 5-tuple (Q,Σ,∆, qstart,R) where Q is the set of trans-

ducer states, Σ is the set of symbols of the input language (syn-

tactic categories and English words), ∆ is the set of symbols of

the output language (KB entities and relations), qstart is the initial

state, and R is the set of transducer rules. Transducer rules ri ∈ R

have the form q.ti
w
→ to, where q ∈ Q is the rule state, ti is an

input tree fragment, to is an output tree fragment, and w is the

weight (or score) of the rule.

In our work, we commit to extended∗1 root-to-frontier∗2 lin-

Contact: Pascual Martı́nez-Gómez, AIRC-AIST, AIST

Tokyo Waterfront, 3-3-26, Aomi, Koto-ku, Tokyo,

pascual.mg@aist.go.jp

∗1 ti may have depth larger than 1.

∗2 Top-down transformations.

ear∗3 transducers [Maletti et al., 2009], possibly with deleting∗4

operations. In this type of transducer, ti and to in final rules are

subtrees, whereas in non-final rules, ti and to have variables in

some leaves, specifying the connecting points with other tree frag-

ments.

Let p be a path that uniquely identifies a node in a tree, equiv-

alent to a Gorn address [Gorn, 1965]. For example, p = (0)

identifies the left-most child (child in branch index 0) of the root;

p = (0, 1) identifies the second child of the first child of the root;

p = () identifies the root. Let p1 · p2 be the concatenation of

two paths, e.g. p1 = (a, b) and p2 = (c, d) would result in

p1 · p2 = (a, b, c, d), and let the operator |p| denote the length

of a path, e.g. |p1| = 2. We define a tree fragment t ∈ T as

s ↓ p ⊥ {q1, . . . , qn}, a tree fragment from tree s rooted at p with

n variables substituting subtrees at subpaths qi for 1 ≤ i ≤ n. The

order of {q1, . . . , qn} matters, allowing to describe tree-to-tree re-

lations with different branch orders. Note that p is a prefix of all qi

and qi is not the prefix of any other subpath qj for i 6= j. We can

define the space of tree fragments of s rooted at any node pi as:

T s
pi

= {s ↓ pi ⊥ {q1, . . . , qn} |

qi ∈ Ps ∧ pi · r = qi ∧ |r| ≤ d,

1 ≤ i ≤ n} (1)

where Ps is the set of all possible paths in tree s. The space T s
pi

is parameterized by d, that limits the depth of tree fragments, thus

imposing constraints on the exponential growth. The parameter n

limits the number of variables, which limits the factorial combina-

tions of branch re-orderings.

The complete space of tree fragment pairs is then T s
pi

×T t
po for

all pi ∈ Pi paths in source tree s and all po ∈ Po paths in target

tree t.

A naı̈ve search algorithm that finds the minimum mapping cost

between s at path pi and t at path po would be given by the fol-

lowing recursive formula:

∗3 ti variables appear at most once in the to.

∗4 Some variables on the ti may not appear in the to .

1

The 31st Annual Conference of the Japanese Society for Artificial Intelligence, 2017

4Q1-5in2

C(s ↓ pi, t ↓ po) =

min
q,q′

{γ
(

s ↓ pi ⊥ q, t ↓ po ⊥ q
′
)

+

|q|
∑

j=1

C
(

s ↓ qj , t ↓ q
′
j

)

} (2)

where s ↓ pi ⊥ q ∈ T s
pi

, t ↓ po ⊥ q
′ ∈ T t

po , qj ∈ q

and q′j ∈ q
′. The cost γ (ti, to) is user defined and it usually

depends on the downstream application. The mapping cost be-

tween s and t is finally given by the expression C(s ↓ (), t ↓ ()),

where the node-to-node correspondences could be recovered by

using back-pointers in a dynamic programming implementation.

However, we do not actually implement such naı̈ve algorithm, and

we replace that search by a bottom-up beam-search algorithm (see

[Martı́nez-Gómez and Miyao, 2016] for the details).

3. Experiments

In this section we evaluate the impact of different values of the

tree fragment depth d and number of variables n on the accuracy of

a downstream application. The application is Question-Answering

over Freebase, a large Knowledge Graph with millions of facts.

The problem is: given a natural language question, e.g. “how many

teams participate in the uefa“, transform its syntactic tree into a

tree that represents its executable semantics, e.g.

(ID count (ID Team (ID League Uefa)))

This executable meaning representation can then be deterministi-

cally converted into a SPARQL query and triggered against Free-

base to obtain the desired answer.

We evaluate on the FREE917, a corpus of 641 question-query

pairs for training and 276 questions for testing. We extract rules

when constraining the tree mapping search space by d and n, and

then estimating the parameters of the resulting tree-to-tree trans-

ducer using the latent variable averaged structured-perceptron. At

decoding, we generate 10, 000 target trees (executable meaning

representations), convert them into SPARQL queries, and retain

those that are both syntactically correct and retrieve more than

zero results. We count a point of accuracy if the first tree (highest

scoring tree) retrieves the correct answer, and we count a point of

coverage if at least one tree in the 10, 000 target trees retrieves the

correct answer.

Results are in Table 1. The system t2t-d∞-n∞ stands for the

tree-to-tree transducer induced with unrestricted depth and num-

ber of variables for the tree fragments ti and to. The rest of the

systems impose constraints on these parameters. For example,

t2t-d4-n∞ sets a limit of depth 4 for the tree fragments, but

not limit for the number of variables it uses.

As we can observe, the accuracy drops but the tree mapping time

decreases when we limit the depth of tree fragments and number

of variables to d ≤ 2 or n = 1. As the depth of tree fragments and

number of variables increase, the accuracy saturates between .63

and .65. In these settings, the average number of rules per gram-

mar decreases since the rules are larger (larger tree fragments).

The average tree mapping time also increases proportionally to d

Systems Acc. Cov. # Rules Time

t2t-d∞-n∞ .64 .79 708 3.9, 1.7, 166.6, 8.6

t2t-d1-n∞ .36 .66 1958 1.3, 0.9, 16.5, 1.1

t2t-d2-n∞ .56 .84 886 1.7, 1.1, 24.3, 2.0

t2t-d3-n∞ .65 .80 746 2.4, 1.3, 45.7, 3.5

t2t-d4-n∞ .64 .79 713 2.8, 1.4, 67.0, 4.7

t2t-d5-n∞ .64 .79 708 3.0, 1.4, 87.1, 5.5

t2t-d∞-n1 .09 .30 1228 3.0, 2.0, 44.0, 3.3

t2t-d∞-n2 .63 .83 743 3.4, 1.9, 88.5, 5.3

t2t-d∞-n3 .63 .79 713 3.6, 1.8, 128.5, 6.9

t2t-d∞-n4 .63 .78 706 4.2, 1.9, 149.8, 8.6

t2t-d∞-n5 .63 .78 708 4.1, 1.9, 154.0, 8.3

Table 1: Accuracy and coverage results; average number of rules

and tree mapping time (average, median, maximum and standard

derivation) across all tree pairs.

and n, but we cannot observe the asymptotic trend possibly due

to the small training dataset and the relatively small tree size of

questions and semantic representations.

4. Conclusion

In this paper we have showed a parameterization of the tree

mapping search space that trades expressivity by computational

complexity when inducing tree-to-tree transducers. We evaluated

these tree transducers in terms of their semantic parsing accuracy

when transforming the syntactic tree of a question into the tree

of an executable meaning representation (a SPARQL query). We

found that restricting the depth of the tree fragments to d ≤ 2 or

the number of variables to n = 1 had a negative impact on the

model accuracy. Good results were obtained for d = 3 or n = 2,

and no further significant improvements were obtained for d ≥ 4

and n ≥ 3, perhaps due to the typically small size of the questions

and target trees in the FREE917 corpus.

The size of the transducer grammars in terms of number of rules

decreased for d > 1 and n > 1, since the input and output tree

fragments (ti and to) of those rules are larger. The average tree

mapping time increased proportionally to d and n, but no asymp-

totic trend can be observed given the large standard deviation.

Acknowledgments

This paper is based on results obtained from a project commis-

sioned by the New Energy and Industrial Technology Develop-

ment Organization (NEDO), and is also supported by JSPS KAK-

ENHI Grant Number 16K16111.

References

[Cohn and Lapata, 2009] Cohn, T. A. and Lapata, M. (2009).

Sentence compression as tree transduction. Journal of Artifi-

cial Intelligence Research, 34:637–674.

[Gorn, 1965] Gorn, S. (1965). Explicit definitions and linguistic

dominoes. In Systems and Computer Science, Proceedings of

the Conference held at Univ. of Western Ontario, pages 77–115.

2

[Graehl and Knight, 2004] Graehl, J. and Knight, K. (2004).

Training tree transducers. In Susan Dumais, D. M. and Roukos,

S., editors, HLT-NAACL 2004: Main Proceedings, pages 105–

112, Boston, Massachusetts, USA. Association for Computa-

tional Linguistics.

[Jones et al., 2012] Jones, B. K., Johnson, M., and Goldwater, S.

(2012). Semantic parsing with bayesian tree transducers. In

Proceedings of the 50th Annual Meeting of the Association for

Computational Linguistics: Long Papers - Volume 1, ACL ’12,

pages 488–496, Stroudsburg, PA, USA. Association for Com-

putational Linguistics.

[Knight and Graehl, 2005] Knight, K. and Graehl, J. (2005). An

overview of probabilistic tree transducers for natural language

processing. In Gelbukh, A., editor, Computational Linguistics

and Intelligent Text Processing, volume 3406 of Lecture Notes

in Computer Science, pages 1–24. Springer Berlin Heidelberg.

[Maletti et al., 2009] Maletti, A., Graehl, J., Hopkins, M., and

Knight, K. (2009). The power of extended top-down tree trans-

ducers. SIAM Journal on Computing, 39(2):410–430.

[Martı́nez-Gómez and Miyao, 2016] Martı́nez-Gómez, P. and

Miyao, Y. (2016). Rule extraction for tree-to-tree transducers

by cost minimization. In Proc. of EMNLP, pages 12–22.

[Rounds, 1970] Rounds, W. C. (1970). Mappings and grammars

on trees. Mathematical systems theory, 4(3):257–287.

[Thatcher, 1970] Thatcher, J. W. (1970). Generalized sequential

machine maps. Journal of Computer and System Sciences,

4(4):339 – 367.

[Wu, 2005] Wu, D. (2005). Recognizing paraphrases and textual

entailment using inversion transduction grammars. In Proceed-

ings of the ACL Workshop on Empirical Modeling of Seman-

tic Equivalence and Entailment, EMSEE ’05, pages 25–30,

Stroudsburg, PA, USA. Association for Computational Linguis-

tics.

3

