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3D object segmentation is a crucial ability of machine to percept the real world environment, and previous works
on this problem used 2D segmentation using rgb-d sensors. In environments with heavy occlusions, however, there
are fragments in segmentation results even with mapping in multiple views. We tackle this problem with object
depth prediction by convolutional networks. In our method, the occluded surface depth of objects is predicted
from input rgb images, and 3d points are generated from prediction and input depth. We use datasets with 3D
annotations for training, and show the performance and real-time efficiency our method.

1. Introduction

3D object segmentation, capability of localizing and

segmenting objects in real world, is a central prob-

lem of vision that has wide range of applications for

robotics: navigation [Elfes 89, Furuta 16] and manipula-

tion [Rusu 10, Eppner 16]. One of the main difficulties on

three-dimensional segmentation is the handling of occlu-

sions, and previous works use multi-view methods to handle

this problem [Zeng 16, Wada 16]. However, multi-view cap-

turing takes time, furthermore, there are situations where

multi-view strategy does not contribute because of heavy

occlusions and tightly packed objects.

In order to solve these problems, we propose prediction

of “object depth“, distance from seen object surface to that

occluded from camera angle (Fig.1b). The object depth is

naturally dependant to object class, therefore in our method

the pixel-wise object class and depth are simultaneously

predicted.

The overall system for 3d object segmentation is shown

in Fig.1a, in which inputs comes from rgb-d sensor, and la-

beled 3d points are generated using the sensed depth and

network outputs. The predicted object depth is converted

to the occluded surface depth by adding it with the seeable

surface depth. The both seenable and occluded depth are

converted to 3d points (point cloud), and labeled using the

result of pixel-wise label prediction. Our proposed system

successfully predicts occluded object surface, and generates

3d object model with a single view. In the experiment, we

evaluate our method using a dataset with 6d pose annota-

tions of mesh models, and show its efficiency.

2. Related works

Depth prediction

Previous works on depth prediction/estimation use

learning-based method [Eigen 15, Liu 15] using large

Contact: Kentaro Wada. Graduation School of Information

Science and Technology, The University of Tokyo. 7-3-

1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. +81-3-
5841-7416, wada@jsk.imi.i.u-tokyo.ac.jp.

Depth Input

RGB Input Class Label

Object Depth

Convolutional Network

...

Labeled 3D Points

(a) The System.

camera

depth object depth

(b) Definition of Object Depth.

Fig. 1: 3D Segmentation System with Object Depth

Prediction.

scale training sets of rgb and depth image [Saxena 09,

Silberman 12]. In these previous works, depth estimation

is mainly tackled without object class information, because

surface depth is not defined with object classes and rela-

tively unrelated. However, object depth is the dimension

of each object as defined in Fig.1b, and use of object class

information is necessary.

3D object segmentation

Three-dimensional multi-class object segmentation is

tackled with combination of 2D segmentation and depth

input [Eppner 16], multi-view frame mapping [Wada 16,

Zeng 16], and voxel reconstruction [Song 16]. Our proposed

method is relatively closed to previous voxel reconstruction

method [Song 16] in terms that both methods predicts un-

seen three-dimensional property of object and class. Ours

has two advantages: first, the higher speed of computa-

tion for 3D reconstruction by predicting only object surface

compared to prior work that predicts for all voxels, second,

the denser resolution of prediction by predicting pixel-wise

compared to voxel-wise.
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Fig. 2: Network Model. Filter size of convolutional and pooling layer is represented as (kernel height) × (kernel width) × (output

channels), s-(stride size), p-(padding size).

3. Fully convolutional network for

object depth prediction

In this section, we describe the method to predict pixel-

wise class label C and object depth O from input image

I.

Network input and output

Input of the network f is RGB image I, and outputs are

pixel-wise class scores Cscore and class object depth Ocls:

Cscore, Ocls = f(I). The tensor size of I is (H,W, 3),

where H and W represents image height and width 3 does

RGB channels, that of Cscore and Ocls is (H,W,Ncls) where

Ncls is number of object classes. Considering the test time

of object depth prediction, depth image also can be sensed

by rgb-d sensor, but we did not used it as the network input

because of its noisiness.

From outputs of the network, the class label and object

depth are given as follows:

c = Cij = argmax
k

(Cscore
ijk ), Oij = O

cls
ijc. (1)

where i and j is the index of image height and width, and

note that C and O has tensor size (H,W, 1). In this out-

put design, the network estimates class dependent object

depths Ocls whose number of channels is Ncls, but it is also

considerable of use of single channel for object depth pre-

diction. In this case, network directly predicts O and there

will be no dependency between class prediction and depth

prediction. However, it is reasonable of these dependency

because “object depth” is defined with the classes. We show

its efficiency of predicting class dependent object depth in

the experiment.

For object depth prediction, we apply sigmoid to the out-

put of convolution layer to make the range in [0, 1], and

multiplied 1e3 to make unit meter to milimeter. In order to

estimate the depth of object larger than 1m, there should

be a scaling factor, but in the experiment, we handle object

smaller than 1m and set scaling factor to 1.

Network architecture

We design the network architecture shown in Fig.2

based on the previous work on 2D object segmentation

[Shelhamer 16], in which they use a fully convolutional net-

work to estimate class score map Cscore from input image

I. In addition to the class scores, the object depth is also

predicted in our network, so we double the number of filters

in the last convolutional layer. The deconvolutional layer of

network in previous work is replaced with bilinear upsam-

pling for smaller parameters and faster training. We use

ReLU function for activations after the convolutions except

for the last layer aside from the last layer.

Loss function

The network loss comes from multi-tasks, class segmen-

tation Lcls and object depth prediction Lobjd:

L = L
cls + λ · Lobjd (2)

where λ is the weight parameter of the two tasks, which is

set to 1e4 in the experiment by comparing values in eval-

uation with no training. For class segmentation, we use

pixel-wise softmax cross entropy loss:

1 =

{

1 (Cgt
ij = k)

0 (otherwise)
, L

cls = −
∑

i,j

1 · log(σ(Cscore
ij )k) (3)

where i and j is the index of image height and width, and

k is that of channels and has range [0, Ncls]. And for object

depth prediction, we use pixel-wise smooth l1 loss:

L
objd =

∑

i,j

smoothL1
(Ogt

ij , Oij) (4)

smoothL1
=

{

0.5x2 (|x| < 1)

|x| − 0.5 (otherwise)
(5)

The mean squared error loss is also used in the experiments,

but we find using smooth l1 loss makes it easy to converge

the training while the line search of learning rate for the

optimizer.
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4. Dataset of object depth

In this section, we describe the aquisition of training

dataset for object depth prediction.

6D pose annotated datasets

In order to create object depth dataset, we consider gen-

erating from that with 6D pose annotation of mesh models

with raytracing using camera parameters. There are sev-

eral datasets with pose annotations which are widely used

in computer vision field [Xiang 14, Xiang 16], however, the

dimensions of mesh models in the datasets are not correct

comparing with that of real world. Because of this, we se-

lect the dataset previously used as a benchmark of 6D pose

estimation in a robotic challenge [Zeng 16], in which pose

of mesh model is annotated on RGB-D image for 39 ob-

ject classes shown in Fig.3. We use 798 views (train: 598,

validation: 200) for training and evaluation, which is a suc-

cessfully pose annotated part of whole data.
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Fig. 3: Dataset with 6D Pose Annotation. (a): red

point stands for world, blue for camera, and green for objects.

(b): green points stand for projected poses of objects.

Object depth extraction from pose annotation

The object depth is acquired with raytracing using cam-

era parameters on the 6D pose annotated mesh models.

Though mesh models are given as shown in Fig.3c, it is

not set of polygons but that of points in actual. To make

models raytracable, we have created two polygon models

from the points: one is generated with surface estimation

and voxelization Fig.4a,4c, and the other is generated with

converting 3d points to voxels Fig.4b,4d. As shown in the

figures, both voxels generated two methods has pros and

cons depending on the original object model, so we used

the union set of the two voxels at raytracing.

(a) (b) (c) (d)

Fig. 4: Voxelizations.

5. Experiments

Object depth is class dependant

In this experiment, we verify the efficiency of predicting

class dependant object depth. As described in Section 3,

two types of network outputs are considerable for object

depth: conditional object depth for class Ocls and class

independant one O. For former output, the network has

2×Ncls convolution filters (N-Cls-objd), and Ncls + 1 (N-

1ch-Objd)filters for latter. Model construction is the same

in other layers.

For training, we initialized the weight of layers by copy-

ing from VGG16 network trained for an image classification

task [Simonyan 14], aside from the filters for predicting ob-

ject depth initialized with random values. We use Adam as

the optimizer and 1e-5 for the learning rate after the line

search, 3 for batch size and 300000 for iteration.

Accuracy metric for class segmentation is intersect-

over-union averaged about class (meanIU) previously used

[Shelhamer 16], and that for object depth prediction is ac-

curacy (AcX) with error rangeX: 1mm, 10mm and 100mm.

Table 1 shows the comparision of class depen-

dant/independant object depth, and it shows predicting

class dependant object depth (N-Cls-objd) shows better

performance than predicting independant depth (N-1ch-

Objd) regarding of the metrics of object depth. In terms of

class segmentation, however, N-Cls-objd shows lower accu-

racy than N-1ch-Objd. It is considerable that this is caused

by the difficulty of learning multi-tasks, class segmentation

and object depth prediction, simultaniously. We show the

result using staged learning in the next section: firstly we

trains about class segmentation, and about object depth

prediction secondly.

Table 1: Results of Object Depth Prediction. Valida-

tion results extracted according to the best result of Ac1mm.

Model meanIU Ac1mm Ac1cm Ac10cm

N-1ch-objd 66.4 6.3 51.2 99.3

N-Cls-objd 61.9 6.8 53.5 99.4

N-Cls-objd-Staged 79.3 6.9 54.7 99.5

Staged learning for the multi-tasks

For the staged learning about the two tasks, we firstly

trained the network only about class segmentation with

initialized weight from pre-trained VGG16, and the result

shows 84.7 meanIU. In the next stage, we trained all param-

eters as well as the last Ncls convolution filters with object

depth dataset. The best result is shown in Table 1 at row

of model N-Cls-objd-Staged, and it shows the efficiency of

staged learning compared to the initialization from VGG

(N-Cls-objd).

Real-time 3d object segmentation

The real-time efficiency is evaluated with emulating cam-

era on validation dataset. The input rgb-d images has 30Hz,

and N-Cls-objd-Staged predicts class and object depth in 7-

8Hz. The qualitative results are shown in Table 2, and the

class-awared occluded surface are successfully predicted.

6. Conclusions

We proposed a novel approach of 3d object segmentation

with prediction of occluded surface of objects. Our pro-

posed method is real-time and efficient to generate dense

object model by predicting pixel-wise object depth.
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Table 2: 3D Segmentation Results with Object Depth Prediction.

Input Class Segmentation Object Depth 3D Points

RGB Depth ground truth prediction ground truth prediction
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[Eppner 16] Eppner, C., Höfer, S., Jonschkowski, R.,

Martın-Martın, R., Sieverling, A., Wall, V., and

Brock, O.: Lessons from the amazon picking challenge:

Four aspects of building robotic systems, Proceedings of

Robotics: Science and Systems (2016)

[Furuta 16] Furuta, Y., Wada, K., Murooka, M.,

Nozawa, S., Kakiuchi, Y., Okada, K., and Inaba, M.:

Transformable semantic map based navigation us-

ing autonomous deep learning object segmentation,

in Humanoid Robots, IEEE-RAS 16th International

Conference on, pp. 614–620IEEE (2016)

[Liu 15] Liu, F., Shen, C., and Lin, G.: Deep convolutional

neural fields for depth estimation from a single image, in

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 5162–5170 (2015)

[Rusu 10] Rusu, R. B.: Semantic 3d object maps for ev-

eryday manipulation in human living environments, KI-

Künstliche Intelligenz, Vol. 24, No. 4, pp. 345–348 (2010)

[Saxena 09] Saxena, A., Sun, M., and Ng, A. Y.: Make3d:

Learning 3d scene structure from a single still image,

IEEE transactions on pattern analysis and machine in-

telligence, Vol. 31, No. 5, pp. 824–840 (2009)

[Shelhamer 16] Shelhamer, E., Long, J., and Darrell, T.:

Fully Convolutional Networks for Semantic Segmenta-

tion, PAMI (2016)

[Silberman 12] Silberman, N., Hoiem, D., Kohli, P., and

Fergus, R.: Indoor segmentation and support inference

from rgbd images, in European Conference on Computer

Vision, pp. 746–760 (2012)

[Simonyan 14] Simonyan, K. and Zisserman, A.: Very deep

convolutional networks for large-scale image recognition,

arXiv preprint arXiv:1409.1556 (2014)

[Song 16] Song, S., Yu, F., Zeng, A., Chang, A. X.,

Savva, M., and Funkhouser, T.: Semantic Scene Com-

pletion from a Single Depth Image, arXiv preprint

arXiv:1611.08974 (2016)

[Wada 16] Wada, K., Murooka, M., Okada, K., and In-

aba, M.: 3D object segmentation for shelf bin picking by

humanoid with deep learning and occupancy voxel grid

map, in Humanoid Robots, IEEE-RAS 16th International

Conference on, pp. 1149–1154IEEE (2016)

[Xiang 14] Xiang, Y., Mottaghi, R., and Savarese, S.: Be-

yond pascal: A benchmark for 3d object detection in the

wild, in Applications of Computer Vision (WACV), 2014

IEEE Winter Conference on, pp. 75–82IEEE (2014)

[Xiang 16] Xiang, Y., Kim, W., Chen, W., Ji, J., Choy, C.,

Su, H., Mottaghi, R., Guibas, L., and Savarese, S.: Ob-

jectnet3d: A large scale database for 3d object recogni-

tion, in European Conference on Computer Vision, pp.

160–176Springer (2016)

[Zeng 16] Zeng, A., Yu, K.-T., Song, S., Suo, D.,

Walker Jr, E., Rodriguez, A., and Xiao, J.: Multi-

view Self-supervised Deep Learning for 6D Pose Estima-

tion in the Amazon Picking Challenge, arXiv preprint

arXiv:1609.09475 (2016)

4


