
Depth and Complexity of Deep Generative Adversarial Networks

Hiroyuki V. Yamazaki, Takahira Yamaguchi

Keio University

Although generative adversarial networks (GANs) have achieved state-of-the-art results in generating realistic
looking images, models often consist of neural networks with few layers compared to those for classification. We
evaluate different architectures for GANs with varying depths using residual blocks with shortcut connections
in order to train GANs with higher capacity. While training tend to oscillate and not benefit from additional
capacity of naively stacked layers, we show that GANs are capable of generating images of higher visual fidelity
with proper regularization and simple techniques such as minibatch discrimination. In particular, we show that
an architecture similar to the standard GAN with residual blocks in the hidden layers consistently achieve higher
inception scores than the standard model without noticeable mode collapse. The source code is made available on
https://github.com/hvy/gan-complexity.

1. Introduction

Generative adversarial networks (GANs) are generative

models that are trained to estimate data distributions us-

ing two functions, a data generating function and an ad-

versarial function called the generator and the discrimina-

tor [5]. They have in particular been successful in modeling

distributions of real images yielding sharper results than

variational autoencoders [9].

These two functions, the generator and the discrimina-

tor are often trained as neural networks. The generator

and the discriminator are jointly trained with the objective

function defined by the minimax game min
G

max
D

V (D,G) =

Ex∼px(x)[log(D(x))] + Ez∼pz(z)[log(1 −D(G(z)))] where D

denotes the probability that the discriminator assigns to

its given data, G the data sampled from the generator and

z random input noise. The objective of the generator is

to map the noise z from an easily sampled distribution pz
such as a Gaussian or a uniform distribution to the data

generating distribution. The discriminator is an adversar-

ial classifier, trained to discriminate between samples from

the true distribution and samples from the generator. The

parameters are updated using gradient descent and GANs

converge when those functions reach an equilibrium in this

minimax game, a saddle point in the value function.

This is known to be difficult and the training is not guar-

anteed to converge. It could be the case that the discrimi-

nator pushes the generator around in the data space, never

allowing the generator to spread its mass to cover the real

distribution. Another failure case is having the genera-

tor collapsing to a single or few modes, basically mapping

all possible inputs to nearby points that the discriminator

thinks is real.

Because of the training instability, various architectures

and techniques have been proposed to alleviate these prob-

lems [1, 13, 18]. However, they are often small in terms of

number of parameters compared to neural networks used

for other tasks such as classification.

Contact: Hiroyuki V. Yamazaki, Keio University,
hvy@keio.jp

We argue that this is not optimal in the setting of mod-

eling real image distributions and that GANs are capable

of generating images of higher visual fidelity given more

capacity. In this work, we attempt to train larger models

inspired by the shortcut connections in residual networks in

order to generate images of higher visual fidelity.

The main contributions of this work are as follows.

• Evaluation in terms of inception scores for GANs with

different depths.

• A simple GAN architecture with shortcut connections

that consistently achieves higher inception scores com-

pared to a standard model without noticeable mode

collapse, using minibatch discrimination.

2. Related Work

DCGAN was proposed as an extension to GANs with an

emphasis on convolutional layers to generate images. They

used deconvolutions in the generator to upsample noise and

successfully trained a generative model that could generate

sharp realistic looking images of bedrooms and human faces

[15]. In this work, we will refer the standard GAN to this

architecture.

Other techniques involve training an encoder that maps

data from the data generating distribution to a low dimen-

sional latent space, which can then be used as the noise to

reconstruct the original data as in [3, 4, 10] while [2, 7, 17]

rely on intermediate supervision by splitting up the gen-

erator into several smaller networks, each one with a less

difficult task than the standard GAN to improve the train-

ing.

2.1 Shortcut Connections
Shortcut connections, or skip connections are used in the

residual blocks of residual networks allowing neural net-

works of hundreds or over a thousands layers to train and

improve in terms of classification accuracy over plain feed

forward networks [6]. Residual networks group few convo-

lutional layers, often two or three, into so called residual

blocks. A residual block uses a shortcut connections to di-

rectly pass the input of a block to its output, adding them

1

The 31st Annual Conference of the Japanese Society for Artificial Intelligence, 2017

1A3-2

together and reparameterizing the block to learn the resid-

ual.

Later works have shown that shortcut connections break

symmetry in the loss landscape, reducing the number of

local minima and improving training [14].

With the success of deep residual architectures in training

for non-adversarial settings, we study the effects of those ar-

chitectures when put in the settings of GANs. More specif-

ically, we compare different models with varying number of

residual blocks by plotting the inception scores during the

course of training.

2.2 Minibatch Discrimination
Since early results show that naively stacking residual

blocks increase the amount of oscillation and mode collapse

as shown in Section 4.1, we also train the same networks

with a minibatch discrimination layer right before the fully

connected layer in the discriminator to alleviate the mode

collapse problem [16]. The minibatch discrimination layer

allows the discriminator to look at whole minibatches of

images before assigning probabilities, which allows the gen-

erator to mimic the statistics of each minibatch from the

training dataset.

2.3 Inception Score
The training performance is measured using the incep-

tion score [16] which has been used in [7, 16–18] to eval-

uate trained models. The inception score is defined as

exp(Ex[DKL(p(y|x) || p(y))]) [16]. The exponential of

the expected Kullback-Leibler divergence from p(y), the

marginal distribution over all predictions in a set of sam-

ples to p(y|x), the conditional distribution over classes given

by a pre-trained Inception network. Intuitively, this means

that a classifier should make highly confident predictions,

assign low entropy to p(y|x), but with variations, high en-

tropy to p(y), for well optimized generative models that

yield realistic images. Higher is better.

3. Models

All models are based on the standard GAN architecture

with four deconvolution and four convolution layers with

no pooling layers, but where the last convolution in the dis-

criminator is replaced with a fully connected layer with a

single output, namely the probability D(·). The genera-

tor uses batch normalization followed by the ReLU activa-

tion [12] in all layers except for the last where there is no

batch normalization and the final output is given by a tanh

activation. The batch normalization is removed from the

last layer since we do not want to add noise to the data

after the final trainable layer. Similarly, the discriminator

uses batch normalization in all layers except for the first,

with leaky ReLU [11] activations after each layer to allow

gradients to propagate backwards to the generator. The

final probability is given by the sigmoid function ensuring

that the output is in range [0, 1].

To train deeper GANs with higher capacity, shortcut

connections are added to the two middle-most deconvolu-

tional and convolutional layers with N∈ {1, 2, 3, 5} blocks as

shown in Table 1. Higher N means higher capacity. Resid-

ual blocks are avoided in the first and the last layers, similar

to [6]. Each block consist of two deconvolutional layers and

two convolutional layers in the generator and the discrimi-

nator respectively. In order to keep the number of param-

eters in the same order for both of the networks, architec-

tures are always mirrored (same N) during the experiments.

The architecture of the generator with N = 1 is shown in

Figure 1.

The models are updated using the binary cross entropy

loss with the Adam update rule [8] with a learning rate α =

0.0002, β1 = 0.5, β2 = 0.999 similar to the settings in [15].

All models are trained with CIFAR-10 with a minibatch size

of 64 over 300 epochs. We use weight decay with a decay

rate of 0.00001. Both the generator and the discriminator

are trained using the same settings.

Generator, Input z ∈ R100

Stage Output Block

dc1 4× 4
[

4× 4, 256
]

dc2 8× 8

[
4× 4, 128

3× 3, 128

]
,

[
3× 3, 128

3× 3, 128

]
× (N−1)

dc3 16× 16

[
4× 4, 64

3× 3, 64

]
,

[
3× 3, 64

3× 3, 64

]
× (N−1)

dc4 32× 32
[

4× 4, 3
]

Discriminator, Input x ∈ R32×32

Stage Output Block

c1 16× 16
[

4× 4, 64
]

c2 8× 8

[
4× 4, 128

3× 3, 128

]
,

[
3× 3, 128

3× 3, 128

]
× (N−1)

c3 4× 4

[
4× 4, 256

3× 3, 256

]
,

[
3× 3, 256

3× 3, 256

]
× (N−1)

fc 1× 1 -

Table 1: Architectures for the generator and the discrimi-

nator. N corresponds to the number of residual blocks in a

stage. In our experiments, we use N∈ {1, 2, 3, 5}. dc stands

for deconvolutional blocks, c for convolutional blocks and

fc for the fully connected layer with a single output.

4. Results

The inception scores are plotted over the course of the

training for all architectures in order to compare different

models. While the inception scores usually require a large

number of samples, we reduce that number down to 5000

from 50000 [16] in favor of computation. We can still clearly

see the trend in how the training progresses and are able to

compare the different architectures.

4.1 Stacking Residual Blocks
As shown in Figure 2, naively increasing the depth using

residual blocks tend to degrade the results causing oscilla-

tion and mode collapse. In other words, a batch of images

2

z

dc1 BN ReLU

dc2 BN ReLU

dc3 BN ReLU

dc4 Tanh

x

z

dc1 BN ReLU

dc2-1-1 BN ReLU

BN ReLU

dc4 Tanh

x

dc2-1-2

dc2-1-shortcut

+

dc3-1-1 BN ReLU

BN ReLU

dc3-1-2

dc3-1-shortcut

+

Figure 1: Left: Generator of the standard GAN. Right:

Generator of the proposed model with residual blocks, N =

1. dc stands for deconvolutional blocks, and BN for batch

normalization. The + signs represent element-wise addi-

tions and the xs are the generated images.

being sampled from the generator at any given time has low

diversity while at the same time looking completely differ-

ent when sampled at a different time. This is most likely

caused by the generator being able to move its mass to-

wards a tiny region of the manifold where the discriminator

assign high probability for almost any given input noise z

as the capacity of the network increases. By visually in-

specting the images, we observe that mode collapse often is

correlated with oscillation, meaning that if either of these

occur, that the other is likely to occur as well.

The key observation is that the model with N = 1 as

shown in Figure 1 (Right), achieves roughly the same in-

ception score as the standard GAN, Figure 1 (Left), even

though its depth is increased by two layers in each of the

two networks although it starts degrading towards the end.

This is especially surprising given that N = 2 performs con-

siderably worse.

With minibatch discrimination, this model even surpasses

the standard GAN consistently where it successfully benefit

from the additional capacity. Images sampled from this

model are shown in Figure 3.

An unexpected behavior is the standard GAN suffering

from minibatch discrimination. If the minibatch discrimi-

nation acts as a regularizer, this could mean that the regu-

larization was too strong, allowing the generator to spread

its mass but never converge to generate images of high vi-

sual fidelity.

We also observed that images that look like noise with

low fidelity early in the training have a hard time moving

its mass to regions of the true data distribution. Conversely,

images that look somewhat realistic usually converge to re-

alistic looking images. This is caused by the discriminator

rejecting bad images with high confidence leaving no gradi-

ents for the generator to improve.

5. Conclusions

Due to the convergence difficulty of training GANs, most

architectures today consist of few parameters compared to

neural networks for tasks such as classification. We observe

that the oscillation becomes more prominent as the number

of layers increase, meaning that simply adding complexity

to the networks in terms of depth makes the training worse.

However, we also empirically show that GANs are capable

of generating images with higher visual fidelity given certain

amounts of additional complexity using proper regulariza-

tion techniques and minibatch discrimination. This shows

that depth plays a crucial role in generative settings.

References

[1] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Ben-

gio, and Wenjie Li. Mode regularized generative ad-

versarial networks. CoRR, abs/1612.02136, 2016.

[2] Emily L. Denton, Soumith Chintala, Arthur Szlam,

and Robert Fergus. Deep generative image models us-

ing a laplacian pyramid of adversarial networks. CoRR,

abs/1506.05751, 2015.

[3] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell.

Adversarial feature learning. CoRR, abs/1605.09782,

2016.

[4] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex

Lamb, Mart́ın Arjovsky, Olivier Mastropietro, and

Aaron C. Courville. Adversarially learned inference.

CoRR, abs/1606.00704, 2016.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,

Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron

Courville, and Yoshua Bengio. Generative adversar-

ial nets. In Z. Ghahramani, M. Welling, C. Cortes,

N. D. Lawrence, and K. Q. Weinberger, editors, Ad-

vances in Neural Information Processing Systems 27,

pages 2672–2680. Curran Associates, Inc., 2014.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition.

CoRR, abs/1512.03385, 2015.

[7] Xun Huang, Yixuan Li, Omid Poursaeed, John E.

Hopcroft, and Serge J. Belongie. Stacked generative

adversarial networks. CoRR, abs/1612.04357, 2016.

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. CoRR, abs/1412.6980,

2014.

[9] Diederik P. Kingma and Max Welling. Auto-encoding

variational bayes. CoRR, abs/1312.6114, 2013.

[10] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby,

and Ole Winther. Autoencoding beyond pixels using

3

0 50 100 150 200 250 300

Epochs

2

3

4

5

6

7

8

In
ce

p
ti

on
S

co
re

Standard

Residual, N=1

Residual, N=2

Residual, N=3

Residual, N=5

(a) Without minibatch discrimination.

0 50 100 150 200 250 300

Epochs

2

3

4

5

6

7

8

In
ce

p
ti

on
S

co
re

Standard, MBD

Residual, N=1, MBD

Residual, N=2, MBD

Residual, N=3, MBD

Residual, N=5, MBD

(b) With minibatch discrimination.

Figure 2: Inception scores for models with different depths; the standard GAN and the residual GANs with N∈ {1, 2, 3, 4, 5}.
Inception scores are computed after the last iteration in each epoch.

Figure 3: Randomly sampled images generated from the

best performing model with N = 1 with minibatch discrim-

ination.

a learned similarity metric. CoRR, abs/1512.09300,

2015.

[11] Andrew L. Maas, Awni Y. Hannun, and Andrew Y.

Ng. Rectifier nonlinearities improve neural network

acoustic models. In Proceedings of the 30 th Interna-

tional Conference on Machine Learning, 2013.

[12] Vinod Nair and Geoffrey E. Hinton. Rectified linear

units improve restricted boltzmann machines. In Jo-

hannes Frnkranz and Thorsten Joachims, editors, Pro-

ceedings of the 27th International Conference on Ma-

chine Learning (ICML-10), pages 807–814. Omnipress,

2010.

[13] Augustus Odena, Christopher Olah, and Jonathon

Shlens. Conditional image synthesis with auxiliary

classifier gans. CoRR, abs/1610.09585, 2016.

[14] A. Emin Orhan. Skip connections as effective

symmetry-breaking. CoRR, abs/1701.09175, 2017.

[15] Alec Radford, Luke Metz, and Soumith Chintala.

Unsupervised representation learning with deep con-

volutional generative adversarial networks. CoRR,

abs/1511.06434, 2015.

[16] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba,

Vicki Cheung, Alec Radford, and Xi Chen. Improved

techniques for training gans. CoRR, abs/1606.03498,

2016.

[17] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang,

Xiaolei Huang, Xiaogang Wang, and Dimitris N.

Metaxas. Stackgan: Text to photo-realistic image syn-

thesis with stacked generative adversarial networks.

CoRR, abs/1612.03242, 2016.

[18] Junbo Jake Zhao, Michaël Mathieu, and Yann LeCun.

Energy-based generative adversarial network. CoRR,

abs/1609.03126, 2016.

4

