
ドメイン非依存強化学習エージェントのための冗長なアクションの
検出手法

陣内佑 ∗1

Yuu Jinnai
Alex Fukunaga∗2

Alex Fukunaga

∗1∗2東京大学大学院総合文化研究科
Graduate School of Arts and Sciences, The Univeristy of Tokyo

∗1理化学研究所革新知能統合研究センター
Center for Advanced Intelligence Project, RIKEN

One of the goal of reinforcement learning research is to build a single architecture which can successfully learn
control policies in a wide range of different environments. However, the downside of such a multi-purpose archi-
tecture is that it often adds a redundancy to solve each problem compared to a problem specific architecture.
Specifically, an agent has to be able to apply all actions required in any of the environments. Previous works tackle
this problem by transfer learning and weight actions successful in previous tasks using action prior. In this paper,
we propose a method to learn actions which tend to be successful in a present task.

1. Introduction
One of the major challenge of artificial intelligence is to develop

agents capable of solving a variety of problems and domains with-
out domain-specific engineering.

Several frameworks have proposed to evaluate the general
competency of the agents such as the General Game Playing
[Genesereth 05], the General Video Game Playing [Levine 13],
International Planning Competition [Coles 12], Reinforcement
Learning Competition [Whiteson 10].

The Arcade Learning Environment (ALE) [Bellemare 13] is
widely used as a benchmark platform for domain-independent
agents based on reinforcement learning and classic planning.

To solve a wide range of unknown problems, an agent has to be
capable of applying a variety of actions. However, not all actions
are needed to solve a specific problem. One of the difficulity a
domain-independent agent faces on unknown environment is that
it has no clue of which action is relevant to compete in the environ-
ment. Pruning redundant actions is investigated in classic planning
with transparent domain model which a precise dynamics of the
world is given to the agent at the beginning [Taylor 93]. However,
such methods require a domain model and are not applicable to a
black-box domain where an agent has no access to the description
of the domain. Recently [Jinnai 17] proposed a method to prune
dominated action sequence in online black-box planning, and suc-
cessfully improved the performance of black-box planning in the
ALE [Jinnai 17].

On the other hand, there are no method to prune redun-
dant actions in the action set of the domain-independent agent
in reinforcement learning to our knowledge. Previous research
sidestepped this issue by either using all the available actions or
using an action set hand-coded for each task, which is contrary to
the goal of domain-independent agent.

In this paper, we investigate duplicate avoidance strategies in
reinforcement learning settings for black-box domains. Specif-
ically, we seek to eliminate actions (and sequences of actions)
which are dominated by others (and lead to duplicate states). For
example, in the ALE, which simulates an Atari 2600 game ma-
chine, 18 actions are always available (the joystick has 9 states
– up/down/left/right/4 diagonals/“neutral”, and the “fire” button
has 2 states, 9x2=18). Previous work in search-based planning

for the ALE treats all 18 actions as applicable at every state
[Lipovetzky 15, Shleyfman 16]. However, in any particular game,
many of these 18 actions are dominated (“useless”): First, some
actions are trivially dominated because they are completely ig-
nored, or the program always treats them as being equivalent to
other actions (e.g., in some games, the state of the “fire” button
is irrelevant). Second, some actions are conditionally dominated
because, in a given context, the action results in the same state as
another action (e.g., in a maze-based game, if the agent is stuck
against a wall to the left, then the “left” action is useless because
(in some games) it results in the same state as “no action”). More
generally, sequences of actions can be useless. For example, some
actions can have cooldown periods, i.e, after action a is used, ex-
ecuting a again has no effect for the next t seconds (e.g. firing
missiles in shooting games).

If the domain is transparent (e.g. PDDL is available to the
agent), dominated actions can be detected trivially by analyz-
ing domain models, and dominated action sequences can be
pruned using methods such as duplicate action sequence detection
[Taylor 93], symmetry detection [Fox 99, Pochter 11], and strong
stubborn sets [Wehrle 13]. However, in black-box domain, prun-
ing dominated actions and action sequences is nontrivial because
we can not be certain whether an action is truly dominated, or
merely appears to be dominated due to the context provided by the
current game state.

2. Background
The reinforcement learning (RL) problem an agent interacts

with an unknown environment and attempts to maximize a reward
[Kaelbling 96]. The agent and environment interact at each of a
sequence of discrete time steps, t = 0, 1, 2, 3, At each time
step t, the agent recieves some representation of the environment’s
state, st ∈ S, where S is the set of possible states, and on that
basis selects an action at ∈ A, where A is the set of actions avail-
able to the agent. An agent may have prior knowledge of A(st),
the set of actions valid at state st. One time step later, in part as
a consequence of its action, the agent receives a numerical reward
rt+1 ∈ R and finds itself in a new state st+1.

In particular, a reinforcement learning task that satisfies the
Markov property is called a Markov decision process (MDP). If

1

The 31st Annual Conference of the Japanese Society for Artificial Intelligence, 2017

2P4-3

the state and action spaces are finite, then it is called a finite MDP.
A finite MDP model is defined by its state and action sets and
by the one-step dynamics of the environment. The state-transition
probabilities are: p(s′|s, a) ≈ Prst+1 = s′|st = s, at = a

One of the goal of reinforcement learning is to build a single ar-
chitecture applicable to a wide range of environments. To achieve
this, an agent needs to equipped with In reinforcement learning, a
major approach to cope with the large action set is action prior.

2.1 Action Prior
Previous work addressed the problem of large action sets by

transfer learning. An action prior is one way to use knowledge
acquired in other tasks or domains [Taylor 09]. An agent counts
how many times the action was chosen for the state in previous
trajectories. If an action is chosen more frequently, then use the
action in the present task more often, on the assumption that the
optimal action in previous tasks is more likely to be useful in the
present task. [Sherstov 05] formalized a transfer learning from a
task to a task within a domain.

2.2 Dominated Action Sequence Pruning
Pruning dominated actions or irrelevant actions in the action set

is a common practice in classic planning.
Taylor and Korf ([Taylor 93]) proposed a standard method for

dominated action sequence elimination in deterministic domains
with transparent models, based on the following criterion for de-
termining dominance: An action sequence S1 dominates S2 if and
only if (1) Cost(S1) ≤ Cost(S2), (2) S1 is applicable whenever
S2 is applicable, and (3) Applying S1 and S2 to state s always
result in the same resulting state s′.

However, in model-free environment, pruning dominated ac-
tions and action sequences is nontrivial because we can not be
certain whether an action is truly dominated, or merely appears
to be dominated due to the context provided by the current game
state.

Recently [Jinnai 17] proposed Dominated Action Sequence
Avoidance (DASA), a method to learn dominated action sequences
dominated in classical planning in black-box environment (model-
free environment). DASA learns dominated action sequences in
the course of the planning using previously explored state tran-
sitions. DASA successfully reduced the number of node genera-
tion in Arcade Learning Environment on online planning setting
[Bellemare 13].

3. Dominated Action Sequence Avoidance for
RL

Previous work on RL relies on reward to evaluate the effective-
ness of actions. However, reward by itself is not sufficient to solve
duplicated or dominated actions problem. In fact, many previous
works sidestep this issue by using either entire action set or hand-
coded action set for each task.

We propose an approach which applies Dominated Action Se-
quence Avoidance to RL so that an agent can avoid actions which
are likely to generate duplicated states. The pseudocode of the
framework is given in Algorithm 1. An agent periodically runs
tree search to learn dominated actions. Based on that, θ(a) is set.
During RL episodes, an agent applies action a with probability of
θ(a)π(s, a) instead of π(s, a) so that it avoids dominated actions

in addition to actions with lesser reward.

Algorithm 1: Reinforcement Learning with Action pruning
framework
Require: pruning method D and a pruning condition

1 Initialize π(s, a) arbitrarily;
2 Initialize θ(a) = 0(a ∈ A);
3 for every episode k = 1...K do
4 if Trigger then
5 θ(a)← D;
6 Choose initial state s;
7 repeat
8 a← a ∈ A with probability of θ(a)π(s, a);
9 Take action a, observe r, s′;

10 Update π(s, a);
11 s← s′;
12 until s is terminal;
13 return π(s, a);

4. Conclusions and Future work
Previous wors in RL coped with large action set problem by

pruning actions which tend to give lesser reward. This approach
does not prune duplicated or dominated actions. In this paper, we
proposed a method to avoid dominated action sequences in RL.
Our method seeks to avoid actions which tend to generate dupli-
cated states in addition to actions with lesser reward.

We are currently evaluating the proposed method in a SARSA
[Sutton 98] RL-agent in the Arcade Learning Environment.

References
[Bellemare 13] Bellemare, M. G., Naddaf, Y., Veness, J., and

Bowling, M.: The Arcade Learning Environment: An Evalu-
ation Platform for General Agents, Journal of Artificial Intelli-
gence Research, Vol. 47, pp. 253–279 (2013)

[Coles 12] Coles, A., Coles, A., Olaya, A. G., Jiménez, S.,
López, C. L., Sanner, S., and Yoon, S.: A survey of the sev-
enth international planning competition, AI Magazine, Vol. 33,
No. 1, pp. 83–88 (2012)

[Fox 99] Fox, M. and Long, D.: The detection and exploitation
of symmetry in planning problems, in Proc. IJCAI, Vol. 2, pp.
956–961 (1999)

[Genesereth 05] Genesereth, M., Love, N., and Pell, B.: General
game playing: Overview of the AAAI competition, AI maga-
zine, Vol. 26, No. 2, p. 62 (2005)

[Jinnai 17] Jinnai, Y. and Fukunaga, A.: Learning to Prune Domi-
nated Action Sequences in Online Black-box Domain, in Proc.
AAAI (2017)

[Kaelbling 96] Kaelbling, L. P., Littman, M. L., and
Moore, A. W.: Reinforcement learning: A survey, Jour-
nal of artificial intelligence research, Vol. 4, pp. 237–285
(1996)

2

[Levine 13] Levine, J., Congdon, C. B., Ebner, M., Kendall, G.,
Lucas, S. M., Miikkulainen, R., Schaul, T., and Thompson, T.:
General video game playing (2013)

[Lipovetzky 15] Lipovetzky, N., Ramirez, M., and Geffner, H.:
Classical planning with simulators: Results on the Atari video
games, in Proc. IJCAI, pp. 1610–1616 (2015)

[Pochter 11] Pochter, N., Zohar, A., and Rosenschein, J. S.: Ex-
ploiting Problem Symmetries in State-Based Planners, in Proc.
AAAI, pp. 1004–1009 (2011)

[Sherstov 05] Sherstov, A. A. and Stone, P.: Improving action se-
lection in MDP’s via knowledge transfer, in Proc. AAAI, Vol. 5,
pp. 1024–1029 (2005)

[Shleyfman 16] Shleyfman, A., Tuisov, A., and Domshlak, C.:
Blind Search for Atari-Like Online Planning Revisited, in Proc.
IJCAI, pp. 3251–3257 (2016)

[Sutton 98] Sutton, R. S. and Barto, A. G.: Reinforcement learn-
ing: An introduction, Vol. 1, MIT press Cambridge (1998)

[Taylor 93] Taylor, L. A. and Korf, R. E.: Pruning Duplicate
Nodes in Depth-First Search, in Proc. AAAI, pp. 756–761
(1993)

[Taylor 09] Taylor, M. E. and Stone, P.: Transfer learning for re-
inforcement learning domains: A survey, Journal of Machine
Learning Research, Vol. 10, No. Jul, pp. 1633–1685 (2009)

[Wehrle 13] Wehrle, M., Helmert, M., Alkhazraji, Y., and
Mattmüller, R.: The Relative Pruning Power of Strong Stub-
born Sets and Expansion Core, Proc. ICAPS, pp. 1–9 (2013)

[Whiteson 10] Whiteson, S., Tanner, B., White, A., et al.: The
reinforcement learning competitions, AI Magazine, Vol. 31,
No. 2, pp. 81–94 (2010)

3

