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Link analysis has attracted attention from wide range of disciplines as it reveals latent knowledge from relational
data. In applications like drug discovery or reactome analysis, identifying unobserved relations from data may
reduce cost of wet experiments. In this paper, we study the problem of link collection. Given fixed set of nodes
and a set of links, an algorithm for this problem iteratively outputs pair of nodes as queries. Queries are labeled by
an annotator and links among them are utilized in further query calculation. We examine the effect of deploying
several exploration strategies into proximity indices. In our experiments modifications improve performance of
proximity indices on several datasets. Our work provides insights about how exploration can be deployed into
proximity indices for graph mining tasks.

Figure 1: Example for situation where greedy policy can be

suboptimal.

1. Introduction

Relational data analysis reveals latent knowledge from

structure of data. For example, in bioinformatics by rep-

resenting the interactome as undirected acyclic graphs al-

lows prediction of new interactions. Many proximity indices

have been proposed in literature. For instance, the common

neighbor coefficient is defined to be the number of common

entities in neighborhood of two nodes. In the case of social

network, this index can be interpreted as common friends,

and two individuals are likely to know about each other if

they have a lot of common friends. In literature, proximity

indices have been thoroughly studied and widely applied to

various applications, because of their effectiveness.

The construction of relational datasets is also an impor-

tant task in relational data analysis. Expertise and exper-

iment expense are often necessary in constructing domain

specific datasets. In this paper, the problem of link collec-

tion is considered. Given the set of entities V , a subset of

links Eini, and an oracle O, the agent iteratively picks a

query from a set of node pairs P whose connectivities are

unobserved. If a query is labeled as connected by O, it will

be added into the set of links. The object is to maximize the

number of links collected within T iterations. This problem

setting is of benefit to applications in which the budget of

data construction is limited.
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An obstacle in making use of proximity indices to collect

link is the exploration-exploitation dilemma. Proximity in-

dices identify apparently best queries in an iteration, but

naively selecting the currently best query may result in a

suboptimal overall outcome. For example, suppose a net-

work is initialized as shown in Figure 1. Naively applying

common neighbor index results in deterministically query-

ing for all unconnected pairs in the left pentagon first, in

regardless of true distribution of links.

In our approach, the deployment of exploration is car-

ried out from two aspects. On the one hand, two scores

are proposed for selecting queries, which measure the value

of neighboring pairs. The agent is encouraged to explore

information in the neighborhood of a pair of nodes. On

the other hand, proposed scores are combined with proxim-

ity indices stochastically. Experiments are carried out on

four network datasets with three proximity indices. Our

results show that stochastic combination can outperform

using proximity indices only.

2. Related Work

Active learning paradigm has been applied in scenario to

reduce cost of obtaining data in literature of link predic-

tion problem. For example, in [MCG10] and [KNM14] the

authors applies sampling heuristics to protein-protein pre-

diction task and to protein-compound response prediction

task, respectively. In active learning an agent needs knowl-

edge about unconnected pairs, so it tends to query for it

if necessary. On the contrary, in link collection problem

an agent should avoid querying for unconnected pairs to

maximize number of links obtained in T iterations.

In [KKB+15], the authors address the problem of link

collection in multi-relational setting, and learn a predictive

score to select queries by solving an optimization problem.

In [KXO16] the authors propose a probabilistic factoriza-

tion approach for selecting queries that could benefit from

path structure in a graph. To our knowledge, though prox-

imity indices become a important line of approach in litera-

ture of link prediction [LNK07], they have not been applied

to link collection problem yet.
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Figure 2: Results of link collection.

3. Approach

3.1 Proximity Indices
Various proximity indices are proposed in literature. In

this paper three of them are considered: Common Neighbor

(CN), Adamic Adar (AA) and Jaccard(JA). Denote nodes

in a node pair x as x0 and x1. Directions are not considered.

Denote set of nodes that are directly connected to some

node as Γ(·). The definitions of proximity are:

CNE(x) = |Γ(x0) ∩ Γ(x1)| ,

JAE(x) =
|Γ(x0) ∩ Γ(x1)|
|Γ(x0) ∪ Γ(x1)| ,

AAE(x) =
∑

w∈Γ(x0)∩Γ(x1)

1

log(|Γ(w)|) ,

(1)

where subscript E refers to the current set of links.

3.2 Scores for Neighborhood Exploration
Proximity indices are calculated from information of set

of nodes that are one or two hops away from x0 and x1. De-

note set of all possible unconnected pairs formed by nodes in

such set as ∆(x). In real network x and elements in ∆(x) are

often correlated. For example, in the case of co-authorship

network, collaboration of two scientist can induce further

collaboration between members of their groups. Thus for

some proximity index f, fE∪{y}(x) can also be used as prox-

imity index, where y ∈ ∆(x). Subscript E ∪ {y} refers to

temporarily add y to E, the current set of link, and remove

it after calculation. Compared to f, fE∪{y} utilizes correla-

tion between x and ∆(x). By enumerating y, information

in neighborhood can be explored. Based on this idea, we

propose the following score:

Table 1: Statistics of Datasets

dataset # of nodes # of links type

wi2007 1496 1714 protein-protein

phenotype 912 22738 protein-protein

lookaheadE(x) =

∑
y∈∆(x) f(y)fE∪{y}(x)∑

y∈∆(x) f(y)
. (2)

3.3 Exploration and Exploitation
In each iteration, an agent selects best node pairs either

according to proximity indices or according to score defined

in Eq. 2. The former action is referred to as exploitation.

In the latter case, for efficiency reason, an agent only select

query from pairs with top-ten proximity values in P . The

idea of ε-policy is adopted. An agent selects queries accord-

ing exploration score with probability ε, and selects query

according to proximity indices with probability 1− ε.

4. Experiments

4.1 Data
We use ”wi2007 ” and ”phenotype”, two protein-protein

interaction datasets available on webset of Center for Can-

cer System Biology [SRC+09]. All directions and loops are

removed.

4.2 Setting
Radom selection is used as baseline, in which queries are

selected uniformly at random from P . The number of links

collected by exploitation, random selection and ε-info-gain

are divided by the number of links collected by exploitation

of the corresponding proximity index. This gives a normal-

ized performance measure for each policy.
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Experiments are carried out with Eini containing 20%

and 80% of total links. By comparing results from them,

we can examine impact of structural information on link

collection. In each iteration, 100 node pairs are given to an

agent, which is randomly sampled from V ×V \E. V is the

set of nodes. Collection procedures are executed for 10,000

iterations. ε is set to 0.1.

4.3 Results
Figure 2 shows result of link collection on four datasets.

Both exploitation policy and ε-lookahead policy are more

than five times better than random selection on ”wi2007”

dataset. Influence on exploitation and ε-lookahead of

amount of structural information is observable. This is be-

cause more unconnected pairs will be assigned high value

of proximity if more links are available. In the case of

”wi2007”, performance of the two policies being comparing

diverge when 80% links are used in initialization, though

they are almost the same when 20% links are used in ini-

tialization. In the case of ”phenotype”, performance of ε-

lookahead is improved when more links are used in initial-

ization.

5. Conclusion

In this paper we present experiment results of deploying

exploration in link collection with proximity index on four

datasets. These preliminary results implies that pure ex-

ploitation, or greedy policy, can be sub-optimal one if the

object is to maximize total links collected.
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