
Combining Multiple Dictionaries to Improve Tokenization of Ainu Language

Michal Ptaszynski∗1 Yuka Ito∗2 Karol Nowakowski∗3 Hirotoshi Honma∗2

Yoko Nakajima∗2 Fumito Masui∗1

∗1 Department of Computer Science, Kitami Institute of Technology
∗2 Department of Information Engineering, National Institute of Technology, Kushiro College

∗3 Independent Researcher

In this paper we present our research in improving a tokenizer for Ainu language. Tokenization is a process where
a sentence is separated into basic elements, such as words or morphemes. Ainu language is a critically endangered
language of Ainu people living in northern parts of Japan. Since Ainu language originally did not have a writing
system, documents in Ainu language are usually transcribed in an unsystematic way. To allow effective processing
and contribute to further revitalization of Ainu language, we combine multiple official Ainu language dictionaries
to improve tokenization of such documents. We also compare state-of-the-art tokenizer with custom one based for
the needs of this research.

1. Introduction
Ainu language is a critically endangered language isolate spo-

ken by the Ainu people living on northern parts of Japan, such as
Aomori and Hokkaido, extending to Sakhalin. Although Ainu re-
side in parts of the world inhabited mostly by Japanese, Chinese
(modern Mongoloids), or Native American-related Inuits, they are
genetically unrelated to those peoples [1]. Their language has also
remained unique in its kind, with no proof of origin or relation to
any other known world language [2]. The critical situation of the
language is revealed by the fact that although the population of
Ainu-related people is estimated on around 25 thousand [3], the
number of Ainu community members capable of speaking Ainu
language fluently is estimated to less than hundred [4].

To contribute to the task of preserving and revitalizing of the
Ainu language, Ptaszynski et al. [5] proposed POST-AL, or Part
of Speech Tagger for Ainu Language, which included a tokenizer,
part-of-speech tagger, and a simple word-to-word translator for
Ainu language. However, there have been some tasks remained in
the POST-AL system. The most crucial one was the limited dictio-
nary base, which hindered all parts of the system. As Ptaszynski et
al. [11] later confirmed, various dictionaries influence the perfor-
mance of the system in different ways. Therefore, in this research
we focused on combining several of the existing dictionaries to im-
prove the Ainu language tokenizer, as the first step in improving
the general performance of the whole POST-AL system. We also
compared the proposed method to the state-of-the-art, namely, the
tokenizer included in Natural Language Toolkit (NLTK), trained
on the provided Ainu language data.

In the following sections we firstly present the methods applied
in the research, namely, POST-AL system as a whole with the
Ainu language tokenizer in particular, and the NLTK tokenizer.
We also describe all dictionaries used to create various dictionary
base combinations, and perform two evaluation experiments. First,
to find out which tokenizer works better for Ainu language, and
second, to chose the optimal dictionary base combination. Finally,

Contact: Michal Ptaszynski, Kitami Institute of Technology, Koen-
cho 165, 090-8507, Kitami, Japan, Tel./Fax:0157-26-9327,
E-mail: ptaszynski@cs.kitami-it.ac.jp

we conclude the paper and discuss further improvements.

2. Tokenizers
2.1 POST-AL Tokenizer

The proposed tokenizer is a part of Ainu language toolkit de-
veloped by Ptaszynski et al. [6], which consists of the mentioned
tokenizer, POST-AL, or Part of Speech Tagger for Ainu Language
[5], basic word-to-word Ainu to Japanese translator, and a simple
chunker. The toolkit was originally using a dictionary base created
on the “Lexicon to Yukie Chiri’s Ainu Shin-yōsyū (Ainu Songs of
Gods)” created originally by Kirikae (2003) [7].

The included tokenizer is based on a standard approach to tok-
enization, namely, dictionary lookup, with further modifications,
such as matching beginning from the longest string in lexicon
(longest string matching). The tokenizer also keeps track of the
already matched word patterns to avoid over-tokenization, or split-
ting each word recursively down to its smallest elements.

2.2 NLTK Word Tokenizer
For performance comparison we used Word Tokenizer included

in the NLTK, or Natural Language Tool-Kit∗1. However, since
originally the tokenizer was based for English, we re-trained it on
the same dictionary base as included in POST-AL.

3. Dictionaries
3.1 Lexicon to Ainu Songs of Gods

As the first dictionary we applied the one used originally in
POST-AL, namely, Ainu shin-yōshū jiten (Lexicon to Yukie Chiri’s
Ainu Shin-yōsyū (Ainu Songs of Gods)) by Kirikae (2003) [7]
(later abbreviated to KK). It is one of the newest Ainu language
dictionaries with a part-of-speech classification standard devel-
oped to highlight the specificities of parts of speech in Ainu lan-
guage. Thus, except traditional POS names like nouns or verbs,
the dictionary contains parts of speech either rare or not existing
in other languages, such as “interrogative indefinite adverb”, like
hempara, “demonstrative adverbs”, like ene or neno, or “postpos-
itive adverb”, like ari, epitta.

∗1 http://www.nltk.org/

1

The 31st Annual Conference of the Japanese Society for Artificial Intelligence, 2017

1L1-5



The dictionary contains 2,019 entries, each containing five types
of information: token (word, morpheme, etc.), part of speech
(POS), meaning (in Japanese), reference to the traditional Ainu
story (yukar) it appears in, and usage examples (not for all cases).

3.2 Ainu Conversational Dictionary
Ainugo kaiwa jiten (Ainu conversational dictionary) [8] is one

of the first dictionaries for Ainu language collected by a Japanese
researcher. Shōzaburo Kanazawa, with help of Kotora Jinbo, col-
lected it firstly around 1895 and 1897, right after Piłsudski’s first
collection [9], and a few years before Batchelor published his first
Ainu-English-Japanese dictionary [10]. The most recent reprint of
the dictionary is dated on 1986.

In its original form, the dictionary contains 3,839 entries. How-
ever, for the need of this research we have adopted the version de-
veloped by Ptaszynski et al. [11], where they divided the original
multi-word entries and created 12,855 separate one-word entries,
which helped increase the Recall rate when the dictionary was ap-
plied in POS tagging. Later we refer to this dictionary as JK, after
the initials of its original creators.

3.3 Combined Dictionary
Finally, we combined the two above dictionaries. Cases where

the same word appeared in both dictionaries were automatically
unified based on their Japanese translations. The final combined
dictionary contained 4,161 entries. In the following sections we
will refer to this dictionary as JK+KK.

4. Datasets
4.1 Yukar - Ainu Songs of Gods

As the dataset for evaluation we used a collection of 13 Ainu
stories (yukar) included in Ainu shin-yōshū (Ainu Songs of Gods)
gathered by Chiri (1978) [12]. The stories have been partially pro-
cessed by Kirikae [7], who separated them into words (tokenized)
manually according to linguistic rules (the original texts were tran-
scribed and separated by Chiri according to poetic rules). There-
fore this set is ideal for evaluating the tokenization performance.
Later we abbreviate these materials to “Yuk.”

4.2 Shibatani’s Colloquial Text Samples
Although Ainu Songs of Gods is a sufficiently good source for

testing tokenization performance, the original dictionary base was
created on the same data, meaning, that performance when tested
with this dictionary would be higher. Therefore we decided to ap-
ply other datasets as well. As the first one we used colloquial text
samples included in Shibatani’s The Languages of Japan [2]. The
book, among others, contains sixteen examples of longer sentences
in Ainu language, tokenized according to linguistic rules, similarly
to the work done by Kirikae (2003) [7]. Later we abbreviate these
materials to “Shib.”

4.3 Mukawa Dialect Samples
We also used “The Japanese-Ainu Dictionary of Mukawa Di-

alect with Sound” [13], containing 20,147 of various sentence
samples. It is a dictionary developed on the basis of 150 hours of
speech in Ainu language (Mukawa dialect), recorded by Tatsumine
Katayama. The dictionary was developed by Hiroshi Nakagawa
and Yuko Honda under the grant “Descriptive Study of Mukawa
Dialect of Ainu using Recorded Materials.” Later we abbreviate
these materials to “Muk.”

Table 1: Results of comparison between two applied tokenizers.

POST-AL NLTK word
tokenizer tokenizer

Pr Re F1 Pr Re F1

Yuk09 81.3% 85.9% 83.2% 38.4% 92.9% 53.8%
Yuk10 90.2% 93.4% 91.5% 28.8% 82.1% 42.1%
Yuk11 86.0% 90.6% 87.9% 31.9% 89.1% 46.5%
Yuk12 84.5% 87.7% 85.7% 33.1% 86.0% 46.9%
Yuk13 87.4% 92.7% 89.6% 34.8% 86.1% 49.0%

5. Evaluation Experiments
We performed two evaluation experiments. In the first one, we

compared the two tokenizers mentioned in section 2. on the same
data, namely, Yukar - Songs of Gods, in particular the 9th to 13th
yukar collected by Chiri [12]. In the second experiment we used
the best tokenizer from the first experiment and verified its per-
formance on the data mentioned in section 4., by using various
dictionary combinations, mentioned in section 3..

5.1 Experiment 1: Comparing Tokenizers
In the comparison of the two applied tokenizers, POST-AL to-

kenizer and NLTK tokenizer, we used the same dictionary base,
namely Kirikae’s lexicon [7], and tested it on the five yukar stories,
from yukar 9 to yukar 13 [12]. Moreover, since the original tran-
scription of Ainu language used by Chiri differs from the present
standard (see [7] for details), the data was further preprocessed in
the following way. For the needs of experiment we used transcripts
of yukar stories provided by Kirikae [7], which follow modern
standard in Ainu language transcription. Furthermore, since yukar
are poems, traditionally, in transcription they have been divided
into short chunks representing pauses in recitation. To make the
task more linguistically based, we also re-joined the chunks and
re-separated them into actual sentences.

All results were calculated with the means of Precision (P), Re-
call (R) and balanced F-score (F). Tokenization is in short a pro-
cess of separating sentence into tokens (words, punctuation marks,
etc.), which in practice is realized by separating the sentence by,
e.g., spaces. Thus Precision is calculated as the percentage of how
many separations, or “spaces”, within those proposed by the sys-
tem were correct. It is calculated as in equation 1. Recall is the
percentage showing how many correct spaces the system proposed
within all possible correct spaces. It is calculated as in equation 2.
The balanced F-score is a harmonic mean of the two values. It is
calculated as in equation 3. All results were represented in Table
1. Since both the dictionary and test data were of similar origin
(yukar), it was predictable that the results should be high, and the
only differences would come from the tokenizer algorithm itself.

As for the results, NLTK tokenizer, although obtaining compa-
rable Recall to POST-AL tokenizer, reached much lower Precision.
The analysis of errors showed, that NLTK tokenizer re-trained on
the new dictionary base, recursively divided each separated word,
thus suffering from over-tokenization. This problem is dealt with
in POST-AL tokenizer by keeping track of separated words.

However, since the results of POST-AL tokenizer were still not
ideal we plan to further improve the tokenization by, e.g., applying
contextual information (usage examples from the dictionary, etc.).

2



Table 2: Results of all dictionaries and their combinations, under all evaluation conditions.

JK Input text
Yuk9 Yuk10 Yuk11 Yuk12 Yuk13 samples Shib Muk Ave. version:

JK

Precision 53.8% 57.7% 56.2% 50.4% 58.3% 86.2% 64.9% 69.0% 62.1%
Recall 53.8% 57.7% 56.2% 50.4% 58.3% 86.2% 64.9% 69.0% 62.1% Postprocessed

F-score 53.8% 57.7% 56.2% 50.4% 58.3% 86.2% 64.9% 69.0% 62.1% (no spaces)
Precision 55.4% 60.8% 60.1% 51.7% 65.3% 79.9% n/a n/a 62.2%

Recall 55.4% 60.8% 60.1% 51.7% 65.3% 79.9% n/a n/a 62.2% Original
F-score 55.4% 60.8% 60.1% 51.7% 65.3% 79.9% n/a n/a 62.2%

Precision 53.2% 58.2% 56.0% 49.1% 57.3% 73.6% n/a n/a 57.9%
Recall 53.2% 58.2% 56.0% 49.1% 57.3% 73.6% n/a n/a 57.9% Original

F-score 53.2% 58.2% 56.0% 49.1% 57.3% 73.6% n/a n/a 57.9% (no spaces)

KK

Precision 81.6% 83.1% 91.1% 77.4% 87.0% 66.8% 57.8% 65.5% 76.3%
Recall 81.6% 83.1% 91.1% 77.4% 87.0% 66.8% 57.8% 65.5% 76.3% Postprocessed

F-score 81.6% 83.1% 91.1% 77.4% 87.0% 66.8% 57.8% 65.5% 76.3% (no spaces)
Precision 83.9% 86.8% 87.1% 76.9% 87.7% 68.5% n/a n/a 81.8%

Recall 83.9% 86.8% 87.1% 76.9% 87.7% 68.5% n/a n/a 81.8% Original
F-score 83.9% 86.8% 87.1% 76.9% 87.7% 68.5% n/a n/a 81.8%

Precision 79.4% 82.0% 87.4% 74.6% 85.3% 56.3% n/a n/a 77.5%
Recall 79.4% 82.0% 87.4% 74.6% 85.3% 56.3% n/a n/a 77.5% Original

F-score 79.4% 82.0% 87.4% 74.6% 85.3% 56.3% n/a n/a 77.5% (no spaces)

JK+KK

Precision 73.4% 80.4% 81.9% 73.9% 85.3% 82.9% 70.8% 69.0% 77.2%
Recall 73.4% 80.4% 81.9% 73.9% 85.3% 82.9% 70.8% 69.0% 77.2% Postprocessed

F-score 73.4% 80.4% 81.9% 73.9% 85.3% 82.9% 70.8% 69.0% 77.2% (no spaces)
Precision 78.8% 84.1% 80.8% 74.6% 85.7% 78.5% n/a n/a 80.4%

Recall 78.8% 84.1% 80.8% 74.6% 85.7% 78.5% n/a n/a 80.4% Original
F-score 78.8% 84.1% 80.8% 74.6% 85.7% 78.5% n/a n/a 80.4%

Precision 70.9% 79.9% 78.4% 71.1% 80.7% 69.9% n/a n/a 75.2%
Recall 70.9% 79.9% 78.4% 71.1% 80.7% 69.9% n/a n/a 75.2% Original

F-score 70.9% 79.9% 78.4% 71.1% 80.7% 69.9% n/a n/a 75.2% (no spaces)

P =
correctly predicted spaces

all proposed spaces
(1)

R =
correct predicted spaces

all gold standard spaces
(2)

F1 = 2
P ∗R
P +R

(3)

5.2 Experiment 2: Combining Dictionaries
Experiment Setup: Since the first experiment revealed that the
custom tokenizer built especially for the Ainu language obtained
much higher results, in the next experiment we applied the winning
POST-AL tokenizer. The goal of the second experiment was to
verify what is the optimal dictionary base for the tokenizer. We
compared Kirikae’s lexicon [7] (KK), Kanazawa-Jinbo dictionary
[8] (JK), and the combination the two (JK+KK).

As the first test data we used the same four yukar stories as in
the first experiment. We also verified the performance under sev-
eral conditions. Firstly, as it was mentioned in section 5.1, The
original data [12] does not follow the modern standard of Ainu
language transcription. However, we can predict that in practice,
the tokenizer sometimes will be used to tokenize also texts in non-
standard transcription. Therefore we verified the performance both
for the original transcription used by Chiri [12] (Input text version:
Original), as well the one postprocessed later by Kirikae [7] (In-

put text version: Postprocessed). This time however, for practical
reasons, we used the line-splitting representing recitation pauses
(verses), and not full sentences, as int he first experiment (thus dif-
ferences in KK performance for yukar 9-13). Finally, originally,
verses also included spaces in the middle of the line representing
a caesura (a break in a verse indicating a separation of two recited
phrases). In the experiment we checked if caesura helped or hin-
dered the performance by using the dataset either with caesurae
(Original), or without (Original (no spaces)).

However, since the performance of the system could be influ-
enced by the data it was trained on. Therefore, we also used sen-
tence examples from Ainu Conversational Dictionary [8], to check
if indeed the system will perform better on samples containing its
training data.

To also verify the tokenizer in more objective conditions, we
also used data unrelated to training data, namely, text samples from
Shibatani [2] (Shib) and sentence samples from Mukawa Dialect
Dictionary [13].
Results: The results for all verification conditions were repre-
sented in Table 2.

First of all, the tokenizer usually worked best on data prop-
erly transcribed (Postprocessed). However, performance on non-
standard transcription was also sufficient, and in some cases bet-
ter, which means the system can be used also in other transcription

3



Table 3: Analysis of tokenization errors.

Tokenizer Gold std Category

kutun kutun kutunkutun Dictionary
a sawa as a wa Tokenizer
tasi ne ta sine Tokenizer

karku su kar kusu Tokenizer
neap ne a p Tokenizer
aw a a wa Tokenizer

kuru n kur un Tokenizer
nep ne p Tokenizer

cir uska ci ruska Tokenizer
ciki k ci kik Tokenizer

cioarkaye ci oarkaye Tokenizer
ayke a ike Tokenizer

pokna sir poknasir Dictionary
ciousi ci ousi Tokenizer

montum mon tum Tokenizer
cioarkaye ci oarkaye Tokenizer
petetok o pet etoko Tokenizer
pirkare ra pirka rera Tokenizer

isoytak isoitak Dictionary

schemas.
We also found out that caesura always helps in tokenization. It

provides an additional hint in tokenization, and when deleted often
causes errors.

As predicted, tokenization based on Kirikae’s lexicon achieved
higher results for yukar stories, while Kanazawa-Jinbo’s dictio-
nary was better for processing sentence samples from that dic-
tionary. However, the performance for the combined dictionary
(JK+KK) did not drop severely. Moreover, what is important, the
combined dictionary performed much better on data unrelated to
training data, and in average.
Error Analysis: To verify what was the most common cause of
errors we looked at wrongly tokenized words from yukar 10. The
results we represented in Table 3. Most common cause of errors
was the fault in the tokenization process (see “Tokenizer” in the
far right column of Table 3). Some of the errors were caused by
the structure of the dictionary. For example, words in lexicon are
sorted alphabetically. Moreover, the tokenizer also looks up words
starting from the longest (longest match principle). Thus, e.g.,
phrase awa was divided into aw a, and not into a wa. This could be
improved if the dictionary lookup also included other information,
such as statistical probability of occurrence of a word, or contex-
tual information.

However, there were also errors unrelated to the tokenizer, but
which resulted in lacks in dictionary base (e.g., lack of word
poknasir), or minor inconsistencies in transcription (isoytak vs.
isoitak). Such errors can be easily corrected by further improving
the dictionary base. Some improvement could also be achieved by
adding an external layer for transcription correction.

6. Conclusions and Future Work
The paper presented our research in improving a tokenizer for

Ainu language, an endangered language of Ainu people living in
northern Japan (e.g., Hokkaido). Tokenization is a process where
a sentence is separated into basic elements, such as words or mor-
phemes, and is the first step in other NLP tasks, such as part-of-
speech tagging, parsing, etc.

With a goal to revitalize Ainu language, in previous research we
proposed Ainu language toolkit [6]. At first, we verified that the
proposed tokenizer, which is part of the toolkit, works better for
Ainu language than other state-of-the-art tokenizer. To improve
the proposed tokenizer we combined two official Ainu language
dictionaries. We found out that the combination improved perfor-
mance on objective samples unrelated to training data.

In the future we plan to include in the combinations also other
dictionaries, such as the one by Nakagawa (1995) [14], or Tamura
(1998) [15]. We also plan to improve the tokenizer by adding to the
equation statistical probability of occurrence of a word (e.g., term
frequency), and contextual information (surroundings of a word).

References
[1] Margaret Sleeboom. 2004. Academic Nations in China and Japan.

Routledge: UK.
[2] Masayoshi Shibatani. 1990. The Languages of Japan. Cambridge

university Press, London.
[3] Poisson, B. 2002. The Ainu of Japan. Lerner Publications, Min-

neapolis, p. 5.
[4] Skye Hohmann. 2008. The Ainu’s modern struggle. In World Watch,

Vol 21., No. 6, pp. 20・4.
[5] Michal Ptaszynski and Yoshio Momouchi. 2012. Part-of-Speech

Tagger for Ainu Language Based on Higher Order Hidden Markov
Model, Expert Systems With Applications, Vol. 39, Issue 14 (2012),
pp. 11576-11582.

[6] Michal Ptaszynski, Fumito Masui and Yoshio Momouchi. 2013. A
Toolkit for Analysis of Ainu Language, In Demo Session of 20th
International Conference on Language Processing and Intelligent
Information Systems (LP&IIS 2013).

[7] Hideo Kirikae. 2003. Ainu shin-yōshū jiten: tekisuto bumpō kaisetsu
tsuki (Lexicon to Yukie Chiri’s Ainu Shin-yōsyū (Ainu Songs of
Gods) with Text and Grammatital Notes) [In Japanese]. Published
by Daigaku Shorin.

[8] Kotora Jinbo and Shouzaburo Kanazawa. 1986. Ainugo kaiwa jiten
(Ainu conversational dictionary) [In Japanese]. Sapporo: Hokkaido
publication project center. First edition: 1898, Tokyo: Kinkōdo.

[9] Bronisław Piłsudski (Author), Alfred F. Majewicz (Editor). 2004.
The Collected Works of Bronislaw Pilsudski: Materials for the Study
of the Ainu Language and Folklore, v.3, Pt. 2: Materials for the
Study of the Ainu, (Trends in Linguistics: Documentation). Mou-
ton de Gruyter (Oct 2004)

[10] John Batchelor. 1905. An Ainu-English-Japanese dictionary (includ-
ing a grammar of the Ainu language). Tokyo Methodist Pub. House.

[11] Michal Ptaszynski, Karol Nowakowski, Yoshio Momouchi, Fumito
Masui. 2016. Comparing Multiple Dictionaries to Improve Part-of-
Speech Tagging of Ainu Language. In Proceedings of The 22nd An-
nual Meeting of The Association for Natural Language Processing
(NLP-2016), pp. 973-976.

[12] Yukie Chiri. 1978. Ainu shin-yōshū. Tokyo, Iwanami Shoten.
[13] The Japanese-Ainu Dictionary of Mukawa Dialect with Sound,

http://cas-chiba.net/Ainu-archives/mukawa/
[14] Hiroshi Nakagawa. 1995. Ainugo Chitose Hōgen Jiten: The Ainu-

Japanese Dictionary: Chitose Dialect [In Japanese]. Sōfūkan.
[15] Suzuko Tamura. 1998. Ainugo Chitose Hōgen Jiten: The Ainu-

Japanese Dictionary: Saru Dialect [In Japanese]. Sōfūkan.

4


