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The quality of a good sleep is important for a healthy life. Recently, several sleep analysis products have emerged
on the market; however, many of them require additional hardware or there is a lack of scientific evidence regarding
their clinical efficacy. We proposed a novel method via clustering of sound events for discovering the sleep pattern.
This method extended conventional self-organizing map algorithm by kernelized and sequence-based technologies,
obtained a fine-grained map that depicts the distribution and changes of sleep-related events. We introduced widely
applied features in sound processing and popular kernel functions to our method, evaluated their performance, and
made a comparison. Our method requires few additional hardware, and by visualizing the transition of cluster
dynamics, the correlation between sleep-related sound events and sleep stages was revealed.

1. Introduction

Sleep is an important physiological state of the human

body. Almost one third of the time in a person’s life is

spent sleeping. The quality of sleep is very important to

a person’s health. Therefore, sleep monitoring technology

has become an indispensable content in modern personal

sleep management [Chen 13].

Currently, there are many products on the market that

aim to make sleep assessment portable at a reduced cost.

Besides traditional polysomnography (PSG), actigraphy

has also been used as an alternative tool. One of the prob-

lems of these products is that they are invasive to users,

which means that users have to wear an additional device

or place a device on their bed during sleep. According to

a recent survey, many people are resistant to wearing a de-

vice during sleep [Choe 10]. Even if users accept to wear

the device, it is not easy to properly place the sensors in the

correct position. Also, according to [Mantua 16], medical

experts do not suggest to use the results from these con-

sumer equipment for medical research, which means they

are not reliable enough.

Moreover, additional devices add extra financial bur-

den to the user. The efforts in the market to reduce the

cost are mostly through mobile apps. Mobile apps use a

smartphone’s built-in sensors, and hence, users do not need

to purchase additional hardware. However, according to

[Behar 13], very few of the apps are based on published

scientific evidence.

To solve the problems mentioned above simultaneously,

and considering that many types of sleep disorder are re-

spectively related to a distinctive type of sound, such as

snoring, tooth grinding, limb movement and sleep talking,

we proposed a method for sleep analysis based on clustering

of sound data.
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We extracted sound clips of events from the recorded

sound data, applied Fast Fourier Transform (FFT) to get

the frequency spectrum as input vectors, and then applied

self-organizing map (SOM) [Kohonen 95] algorithm to the

data to obtain cluster maps. In our previous work [Wu 16],

we calculated the Euclidean distance between frequency

spectrum as the only similarity measure between sound

events in standard SOM, in this paper, in order to make a

comparison, we applied Mel Frequency Cepstral Coefficent

(MFCC) [Davis 80] which is a feature widely used in au-

tomatic speech recognition as another metric. Besides the

standard SOM, kernel SOM [Fukui 11] was also used. Since

the Euclidean distance applied in the standard SOM treats

each discrete point as an independent variable, in [Wu 16],

Kullback-Leibler (KL) kernel was introduced through ker-

nel SOM as a similarity measure in order to capture the dis-

tribution structure of a frequency spectrum. In this paper,

to make a comparison, we tried radial basis function (RBF)

kernel and polynomial kernel besides KL kernel. According

to experiment results, the KL kernel SOM (KL-KSOM) ob-

tained the best effect.

2. Methodology

In this section, we introduce the key methodologies ap-

plied in this study.

2.1 MFCC
In sound processing, the mel-frequency cepstrum (MFC)

is a representation of the short-term power spectrum of a

sound, based on a linear cosine transform of a log power

spectrum on a nonlinear mel scale of frequency.

MFCCs are coefficients that collectively make up an MFC

[Davis 80]. They are derived from a type of cepstral rep-

resentation of the audio clip (a nonlinear “spectrum-of-a-

spectrum”). The difference between the cepstrum and the

mel-frequency cepstrum is that in the MFC, the frequency

bands are equally spaced on the mel scale, which approxi-

mates the human auditory system’s response more closely

than the linearly-spaced frequency bands used in the nor-
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mal cepstrum. This frequency warping can allow for better

representation of sound, for example, in audio compression.

In our experiment, 12 MFCC coefficients were extracted

for each sound clip as a MFCC vector, and the Euclidean

distance between the MFCC vectors were applied as the

similarity between sound events.

2.2 Kernel SOM
We used the frequency spectrum as input vector. The

standard SOM uses Euclidean distance as a similarity mea-

sure of data points, so the distribution structure of a fre-

quency spectrum cannot be captured since each discrete

point is treated as an independent variable. The authors

in [Fukui 11], proposed the use of Kullback-Leibler (KL)

divergence to introduce a distribution structure into a sim-

ilarity measure of frequency spectrum of acoustic emission

events and obtained a good effect. In this study, KL kernel,

RBF kernel and polynomial kernel were introduced to SOM

through kernel SOM[Andras 02] [Boulet 08] to cluster the

sleep-related sound events.

The RBF kernel function is defined as

KRBF (xi,xj) = exp
(
− ∥xi − xj∥2

2σ2

)
, (1)

where xi and xj are vectors in the input space, and σ is a

free parameter. For degree-d polynomials, the polynomial

kernel function is defined as:

KPL(xi,xj) = (xT
i xj + 1)d, (2)

The KL kernel function is defined as:

KKL(xi,xj) = exp
(
− βJS(xi,xj)

)
, (3)

JS(xi,xj) = KL(xi,xj) +KL(xj ,xi)

=

v∑
k=1

{
xi,k log

xi,k
xj,k

+ xj,k log
xj,k
xi,k

}
,

(4)

where KL(xi,xj) is the KL divergence, which is the dis-

tance between probability distributions, JS(xi,xj) denotes

the Jensen-Shannon divergence, which symmetrizes the KL

divergence, and β > 0 is a scaling parameter.

The basic concept of the kernel SOM is the same as that

of the SOM. However, in the kernel SOM, the reference vec-

tor is updated in an indirect manner because the reference

vector in the mapped space cannot be calculated.

By replacing x in the updating formula of a reference

vector in the standard batch type SOM by a mapped ϕ(x),

the following updating formula can be obtained:

mi(t+ 1) := γ
∑
n

hc(xn),iϕ(xn), (5)

where t is an iteration step, and γ is a regularization term

γ = 1/
∑

n hc(xn),i. However, since ϕ(xn) cannot be calcu-

lated, the ith reference vector is updated using the dissimi-

larity to all data points ∀n di,n, as follows:

di,n(t+ 1) ≡ ||ϕ(xn)−mi(t+ 1)||2

= K(xn,xn)− 2γ
∑
j

hc(xj),iK(xn,xj)

+ γ2
∑
k

∑
l

hc(xk),ihc(xl),iK(xk,xl).

(6)

2.3 Proposed method: Sequenced-based ker-
nel SOM

In order to clearly and easily understand the analysis re-

port of a user’s sleep, a fine-grained map that depicts the

distribution and changing of sleep-related events is neces-

sary. Different from the normal SOM that deals with static

data, SbSOM introduces SWF into SOM and can visualize

the transition of cluster dynamics since the spatio-temporal

neighborhood is converted into the topological neighbor-

hood by the neighborhood function.

In SbSOM, the position ofM neurons in the visualization

layer be rj = (ξj , ηj), (j = 1, · · · ,M), where ξ-direction in-

dicates the temporal dimension. The nth input data are

located at the ratio of n/N within the input data sequence,

and the jth neuron is located at the ratio of ξj/ξM on the

ξ-direction of cluster map. Let the absolute value of those

differences be ϵ = |ξj/ξM − n/N |. The SWF ψ(n, ξj) is

defined so as to be able to balance the spatio/temporal res-

olution; in case where reversal of data order is not allowed,

the SWF is given as:

ψ(n, ξj) =

{
1 if ϵ < 1

2K

∞ otherwise
, (7)

where K is the number of neurons on ξ-direction. The

winner neuron of the input data xn is determined by spatial

distance combined with SWF as follows:

c(xn) = argmin
j
ψ(n, ξj)∥xn −mj∥. (8)

In this study, the comparison of the clustering results

between standard and kernel SOM demonstrated that KL

divergence as kernel function exhibits better performance.

Based on this premises, a novel algorithm, Sb-KSOM, is

proposed, which is an extension of SbSOM. The proposed

Sb-KSOM kernelized the SbSOM by replacing the Eu-

clidean distance with KL divergence to enable it to handle

the frequency spectrum data. In the proposed Sb-KSOM,

we replaced the normal Euclidean distance calculation in

Eq. (8) with the KL kernel function.

3. Experiment

The data we used in the paper is prepared by Graduate

School of Dentistry in Osaka University. The study proto-

col was approved by the Clinical Research Ethics Commit-

tee of the Osaka University Graduate School of Dentistry.

Written informed consent was obtained from all subjects.

We first applied the standard SOM and three kinds of

kernel SOM to the extracted sound data, and compared the

wPF. Then we used Sb-KSOM on the data to obtain the

spatio-temporal dimensional cluster map, and discussed the

relation between the transition of sleep stages and cluster

dynamics of sound events. All of the experimental subjects

are university students from Osaka University, and hence,

their age was mostly around 20-24. The male to female

ratio was balanced.
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Table 1: Comparison of wPF between standard SOM and kernel SOM clustering results

Subject id
SOMspectrum SOMMFCC KSOMKL KSOMRBF KSOMPL

Mean SD Mean SD Mean SD Mean SD Mean SD

1 0.537 0.033 0.509 0.041 0.604 0.037 0.593 0.051 0.504 0.047

2 0.521 0.041 0.497 0.043 0.573 0.038 0.577 0.038 0.482 0.025

3 0.506 0.031 0.493 0.035 0.551 0.031 0.532 0.033 0.535 0.042

4 0.559 0.040 0.482 0.032 0.592 0.037 0.561 0.035 0.567 0.026

5 0.602 0.039 0.594 0.039 0.629 0.039 0.624 0.041 0.608 0.054

6 0.543 0.033 0.549 0.045 0.600 0.035 0.562 0.038 0.557 0.037

7 0.483 0.042 0.501 0.035 0.523 0.047 0.531 0.051 0.537 0.036

Mean 0.535 0.037 0.518 0.039 0.581 0.037 0.568 0.041 0.541 0.038

3.1 Event extraction
We selected seven nights of sound data. Based on the

burst extraction method, we obtained a total of 6775 sound

events, which included sleep disorder and other sound

events such as outdoor traffic noise. FFT was applied to

the extracted sound data to obtain the frequency power

spectrum. From 24 Hz to 20 kHz, at intervals of 4 Hz, 4995

discretized points as an input for SOM were obtained for

every sound data.

3.2 Quantitative comparison between stan-
dard and kernelized clustering

In the first part of this experiment, we used the sound

data from each subject as a respective dataset and com-

pared the wPF values for each subject between standard

and kernelized algorithms, including standard SOM based

on frequency spectrum or MFCC similarity, kernel SOM

with KL, RBF or polynomial kernel. In order to avoid ini-

tial value dependency, the experiments were executed 50

times and the average values were computed. The hyper

parameter of the kernel functions were tuned by a linear

search. The mean wPF values and standard deviation are

shown in Table 1. The average of wPF shows that MFCC

feature does not performs well on this kind of sound data,

and the KL kernel SOM has the best performance, which

improved by about 10% from standard SOM.

3.3 Sleep pattern analysis
In this experiment, we made a comparative analysis be-

tween cluster maps generated by Sb-KSOM and sleep stage

sequences to reveal the relation between them. We ana-

lyzed all the subject respectively. One of the clustering

results is shown in this section. Subject 2 was chosen since

the tooth grinding or snoring activities are frequent, and

generated more related sound events than the others. Fig.

1 upper part shows the result when Sb-KSOM was applied

to the sound data from Subject 2; the number of neurons

was set to 50×10 with a two-dimensional grid. Subjects’

sleep stages were scored by a medical specialist based on

PSG data from the same night, with a time window size of

30s. The sleep stage sequence of Subject 2 is shown in lower

part of Fig. 1, where REM stage is shown as “R”, awake

stage is shown as “W”. We defined the period that contain

continuous N3 stages with intervals of other stages that less

than 3 min as a deep sleep period, and periods except deep

sleep periods ,awakening stages and REM stages as light

sleep periods. Since the REM stage is a unique phase in

the sleep process, we will discuss it separately.

The sleep periods of Subject 2 were interpreted as follows:

Deep sleep periods (0:13:30 - 1:01:30), (1:39:30 -

1:52:30), (2:00:30 - 02:11:00), (2:20:30 - 02:51:00), (4:04:30

- 4:20:30), (6:00:30 - 6:18:30): There were many snoring

events during these periods, few body movements, and

tooth grindings. We found out that a cluster center of snor-

ing event is usually associated with a deep sleep period.

REM stages (2:53:00 - 3:05:00), (4:42:00 - 5:39:30),

(6:56:00 - 7:29:30): Compared with other stages, REM

stages have a stronger association with clusters of body

movement and a weaker association with those of snoring

or tooth grinding.

Light sleep periods: In each light sleep period, there

were some clusters of tooth grinding and body movement

event but only a few snoring events.

In this experiment, we found that the distribution of

sound event clusters changed simultaneously with the sleep

stage change, for not only Subject 2, but also the other sub-

jects. Even though our analysis includes other subjects who

have different primary sleep disorders and varying pattern

of sleep stages, the finding led to similar conclusions. For

example, on Subject 4, the deep sleep periods were also ob-

viously associated with the clusters of snoring, the number

of body movements was notably more in the light periods

and REM stages than in the deep periods, and no snoring

clusters were found in REM stages.

From this experiment, we found that the transition of

cluster dynamics and the changing of sleep stage are related.

Since the sleep stage sequence is an important tool in the

study of sleep pattern, its relation provides the possibility

of discovering sleep patterns based on the cluster map of

sleep-related sound data from Sb-KSOM.

4. Conclusion

This proposed method combined the advantages of ker-

nelization and sequence-based technologies, and obtained a

fine-grained map that depicts the distribution and changes

of sleep-related events. According to the experiment results,

we can find out that MFCC feature does not performs well

on this kind of sound data, and the KL kernel SOM has the

best performance among KL, polynomial and RBF kernels,

which improved by about 10% from standard SOM.
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Fig 1: Cluster map generated by Sb-KSOM on Subject 2

Since the final objective of our research is to make the

assessment of personal sleep quality more economical, more

practical and more reliable, the correlation between sound

data and sleep stages provides a new train of thought for

studying the sleep pattern. In the future work, we will pro-

ceed to develop a predictive model for personal sleep quality

scoring, the sleep-related sound data will be a main part of

input data, and the relationship between sleep stages and

sound events will play a key role in the algorithm develop-

ment.
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