
Boost SAT solver with hybrid branching heuristic

Moon Seongsoo Inaba Mary

Graduate School of Information Science and Technology, The University of Tokyo

Most state-of-the-art satisfiability (SAT) solvers use the variable state independent decaying sum (VSIDS) as
their branching heuristic because of its robustness. However, in general, a branching heuristic cannot cover all
problems. It is axiomatic that a mixture of branching heuristics with adequate configuration performs better than
single branching heuristic. In this paper, we propose a hybrid branching heuristic and show some preliminary
experimental results by using benchmarks from SAT Competitions to evaluate its efficiency.

1. Introduction

The satisfiability (SAT) problem is a well-known NP-

complete problem. This means that there are no

polynomial-time solutions for SAT problems. Although we

do not have polynomial-time solutions, there has been sub-

stantial progress in SAT algorithms; now, several applica-

tion problems such as software verification, puzzles, and

planning can be solved rapidly by means of state-of-the-

art SAT solvers. Several elements have played a significant

role in speeding up SAT solvers, and branching heuristic is

one of the most influential elements. The variable state in-

dependent decaying sum (VSIDS) [1] is the most prominent

branching heuristic. There have been several attempts [2][3]

to beat VSIDS, but VSIDS is still widely used because of its

robustness. Recently, several new branching heuristics [4][5]

have been proposed, and they might perform better than

VSIDS. However, in general, a single branching heuristic

cannot handle all problems because SAT solvers are used in

a wide and expanding range of practical applications. We

are motivated to improve branching heuristic with a hybrid

strategy that uses several branching heuristics. In the re-

mainder of this paper, we discuss the related work, explain

our proposal for a hybrid strategy, present the experimental

results, and conclude the paper.

2. Related work

2.1 Branching heuristics
Most SAT solvers perform a backtracking search to find a

solution. A branching heuristic selects an unassigned vari-

able and assigns a value of true or false in a backtrack-

ing search. Selection of which variable to branch on next

significantly affects the search efficiency. To pick a vari-

able, the branching heuristics have ranking functions that

maintain a map of scores corresponding to each variable.

The VSIDS branching heuristic updates this map on every

conflict. When a conflict occurs, variables related to that

Contact: Moon Seongsoo, Creative Informatics (Univ of

Tokyo), Bunkyo-ku, Tokyo Yayoi 1-1-1 University of

Tokyo Graduate School of Information Science and

Technology, Graduate School of Creative Information

Department of I-REF Building 4F, Tel: 03-3812-2111,
E-mail address: logic85@hotmail.com

conflict obtain a score, incremented by one. Recently, tie-

breaking of VSIDS (TBVSIDS) [5] was proposed to pick a

better variable from ties or reduce the occurrence of ties.

CHB [4] uses the concept of reinforcement learning and up-

date scores based on rewards calculated by conflict history.

2.2 Hybrid strategies
It is common to choose several different strategies in a

parallel SAT solver to diversify the search. However, se-

quential solvers normally use a single strategy to intensify

the search. There are several attempts to integrate differ-

ent strategies in a sequential solver. SATzilla [6] contains

several different solvers, builds an empirical model using

machine learning techniques and chooses an adequate solver

for each problem based on its feature values. There is also a

attempt to apply a deep learning approach [7] by converting

CNF into a grayscale image and building a classifier using a

convolutional neural network. There has been an attempt

to design a hybrid restart strategy [10] because a slow Luby

restart policy is superior to rapid restart policies for SAT

problems.

3. Proposal

3.1 Motivation
As aforementioned, a single algorithm cannot cover all

SAT problems. To integrate the algorithms and boost

the performance of SAT solvers, several algorithm selection

studies have been proposed. Let us consider the integration

of N different SAT solvers (S1, S2, ... , SN) with different

strategies such as restart, learning scheme, learned clause

evaluation into a solver I, and optimize I. If we want to

improve I with a new policy P , it is necessary to implement

P into each Si and evaluate each of them. In addition, af-

ter updating some Si with P , we must build a model for I

again. It seems to take a lot of effort to apply and evaluate a

new method. Our final goal is to maximize the performance

of I, and to persistently improve I so that it becomes a base

solver for other solvers such as MiniSat [8] or glucose [9].

3.2 Approach
Existing algorithm selection studies for the SAT solver

might be too high-dimensional. If it is possible to focus on

only a small part and improve this part easily, this refine-

ment will lead to better performance and an improved solver

can be used as a base solver for other solvers. Branching

1

The 31st Annual Conference of the Japanese Society for Artificial Intelligence, 2017

1M2-OS-02b-2

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600 700 800

T
im

e
(s

)

instances

VSIDS
TBVSIDS2 + CHB

CHB
TBVSIDS2

VBS

Fig. 1: Cactus plot of the 900 instances from SAT compe-

titions

heuristics can be an appropriate candidate to obtain this.

The recently proposed CHB and TBVSIDS can be imple-

mented easily by using the data structure of VSIDS. This

implies that these branching heuristics can be integrated

easily into a solver. We constructed a random forest model

to allocate an appropriate branching heuristic by training

several features in an original formula.

4. Experimental results

4.1 Static approach
In our preliminary analysis, we noticed that CHB works

well when the input has a small number of variables. As

a first step towards the development of a hybrid strategy,

we selected two branching heuristics, i.e., TBVSIDS and

CHB. As preprocessing, we simply count the number of

variables, and select CHB when the number of variables is

under 9,000; otherwise, TBVSIDS is selected as the branch-

ing heuristic.

Figure 1 compares the performance of different branching

heuristics. We find that our extremely simple hybrid strat-

egy highly outperforms single branching heuristics. If we

succeed in learning a more detailed policy, we could reduce

the gap between our method and VBS.

4.2 Random forest
We trained our model using the benchmarks of SAT Com-

petitions from 2014 to 2016 in both the crafted and appli-

cation tracks. We used 13 features: the number of vari-

ables and clauses in the original formula and variable-clause

graph features (mean, variation coefficient, min, max, and

entropy for both variable node degree and clause node de-

gree). These features can be extracted within a short time

and can be obtained without a specific algorithm. This is

important because when we solve a formula using an SAT

solver with our model, we must extract features as pre-

processing, and time-consuming feature extraction is not

desirable. We used branching heuristics as classes. VSIDS,

CHB, and TBVSIDS have tow versions, and we set 2 differ-

ent parameters for the second version. Moreover we further

implement Tie-breaking of CHB (TBCHB) to obtain a to-

tal of eight different branching heuristics. Our goal is to

maximize the performance of the SAT solver and minimize

the overfitting problem. Using more features does not en-

sure better results. We show partial results in Tables 1 and

2. The results in Table 1 are obtained using all 13 features

mentioned above. In Table 2, we only used one feature.

When we evaluated performance of these classifiers using

k-fold cross validation (Training data: ÂX | ĈX, Test data

AX | CX, where X = 14 | 15 | 16), Table 2 solved 25 prob-

lems more than Table 1. Therefore, a model in Table 2

might be trained better than a model in Table 1.

Table 1: Test results with several training data sets using

all 13 features. Columns: Training data. Rows: Test data.

C: Crafted Track and A: Application Track. ÂX = all -

AX. ĈX = all - CX, where X = 14 | 15 | 16.
C14 A14 A15 C16 A16 all

(300) (300) (300) (200) (300) (1400)

C14 (214) 204 198 244 29 137 812

A14 (231) 174 215 244 39 139 811

A15 (261) 159 212 251 42 137 801

C16 (65) 152 204 224 65 130 775

A16 (157) 169 206 240 35 151 801

Ĉ14 (714) 167 217 249 61 143 837

Â14 (697) 198 211 247 62 143 861

Â15 (667) 201 213 245 63 145 867

Ĉ16 (863) 204 214 246 38 142 844

Â16 (771) 201 213 249 63 139 865

all (928) 202 213 247 63 143 868

Table 2: Test results with several training data sets using

only one feature in a variable-clause graph (variable nodes:

max)

C14 A14 A15 C16 A16 all

(300) (300) (300) (200) (300) (1400)

C14 197 201 234 23 133 788

A14 159 214 241 43 136 793

A15 194 214 249 36 138 831

C16 139 180 199 63 125 706

A16 182 207 236 36 140 801

Ĉ14 180 218 247 56 142 843

Â14 196 211 245 56 139 847

Â15 196 215 246 56 142 855

Ĉ16 202 216 247 51 142 858

Â16 193 215 248 56 137 849

all 196 214 244 56 139 849

5. Concluding Remarks

We proposed a hybrid branching heuristic using an al-

gorithm selection technique. Currently, our model extracts

only several features per formula, and we want to expand it

to other features. By considering other features, we might

reduce our overfitting problem; however, some features re-

quire too much time for calculation. To reduce the time for

feature extraction, we will consider formula sampling. Our

2

method only concentrates on branching heuristics; however,

an SAT solver includes many different heuristics and their

parameters. If we attempt to optimize other small parts

such as a restart policy or an evaluation of learned clauses,

then the combination of optimized small parts might boost

the performance of SAT solvers.

References

[1] Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Ma-

lik, S.: Chaff: engineering an efficient SAT solver. Pro-

ceedings of the 38th Design Automation Conference

(IEEE Cat. No.01CH37232). (2001).

[2] Goldberg, E., Novikov, Y.: BerkMin: A Fast and Ro-

bust Sat-Solver. Design, Automation, and Test in Eu-

rope. 465478 (2008).

[3] Dershowitz, N., Hanna, Z., Nadel, A.: A Clause-Based

Heuristic for SAT Solvers. Theory and Applications of

Satisfiability Testing Lecture Notes in Computer Sci-

ence. 4660 (2005).

[4] Hui Liang, J., Ganesh, V., Poupart, P., Czarnecki, K.

: Exponential Recency Weighted Average Branching

Heuristic for SAT Solvers. Proceedings of the Thirtieth

AAAI Conference on Artificial Intelligence. (2016).

[5] https://www.dropbox.com/sh/kz9hwvhtidyo4rh/

AAAlNhnA8w8cnU4TeFNMMRoba/5_Doctoral_Program?

dl=0&preview=Moon+(1).pdf

[6] Xu, L., Hutter, F., Hoos, H. H., Leyton-Brown, K.

(n.d.). SATzilla-07: The Design and Analysis of an

Algorithm Portfolio for SAT. Principles and Practice

of Constraint Programming CP 2007 Lecture Notes in

Computer Science, 712-727. (2007)

[7] Loreggia, A., Malitsky, Y., Samulowitz, H., Saraswat,

V.: Deep Learning for Algorithm Portfolios. Proceed-

ings of the Thirtieth AAAI Conference on Artificial

Intelligence. 1280-1286 (2016).

[8] http://minisat.se/

[9] http://www.labri.fr/perso/lsimon/glucose/

[10] Oh, C.: Between SAT and UNSAT: The Fundamental

Difference in CDCL SAT. Lecture Notes in Computer

Science Theory and Applications of Satisfiability Test-

ing – SAT 2015. 307323 (2015).

3

