
Video Compression with a Predictive Neural Network

 Lana Sinapayen*1 Takashi Ikegami*1

 *1 The University of Tokyo

Predictive networks are a type of generative neural network model that learns to minimize the error between predicted data
and real input. Prediction is used as a way to perform unsupervised learning of latent structure in the data, for example shapes
and linear transformations in images. As a result, video-trained predictive networks can produce output by processing input
through intrinsically stored invariances. In this study we propose to use such learned invariances as a compression/
decompression engine for videos on spatial and temporal dimensions.

 
1. Introduction

After being first used for classification purposes, Deep
Learning is now starting to be used in a new area called
Predictive Coding [Kanai 2015]. The main idea is to use a Neural
Network to predict time series, instead of directly classifying the
contents of time series. This is particularly effective to perform
unsupervised learning, as these networks have been shown to
learn pattern recognition as a side effect of the prediction task
[Lotter 2015].

On the other hand, the most common way of encoding times
series of images, the MP4 format [Wiedegand 2003], relies on a
relatively simple prediction engine calculating Motion Vectors
(Fig. 1).

2. Proposal
We propose to use the PredNet [Lotter 2016] architecture, an

high performance Predictive Neural Network, as a prediction
engine for video compression (Fig. 2). One of our goals is to
replace the prediction engine in video compression algorithms

(for example, in the MP4 format) to obtain higher compression
rates.

PredNet works by training successive macro-layers of the
network to predict the error on the output of the previous macro-
layer. Each macro-ayer contains 4 sub-networks: the recurrent
network that contains prediction representations, the networks
computing the prediction of the input at t+1, the network
representing the real input at t+1, and network calculating the
error term from comparing input and prediction (Fig. 3).

2.1.Encoding
Here we use a pre-trained version of PredNet to encode one of

the videos of the KITTI dataset [Geiger 2013]. The network is
already trained and the internal weights are fixed and not updated
during use. The network has never been trained on the video we
encode. Instead of running the network on a full batch of data,
we use the first image of a video as input at time = 0 frames. The
prediction at t+1 by PredNet is then compared to the actual frame

- ! -1

Contact: Lana Sinapayen lana@sacral.c.u-tokyo.ac.jp

Fig. 2: Proposed encoding/decoding method. The PredNet model
is trained on sample videos. Then the trained model is used to
predict frames in the video we want to encode, and the
prediction error is encoded the same way as MPEG4.

Fig. 1: Basis of MPEG4 encoding. The Motion Vectors technique
is used to predict the next frame, and the resulting error is
encoded into the video file for future correction.

The 31st Annual Conference of the Japanese Society for Artificial Intelligence, 2017

3M2-2

at t+1, and the resulting error is recorded in a separate file (Fig.
4). The process is repeated for the whole video. We obtain a file
containing all the errors, that is all the information necessary to
correct the predicted video back to the original video.

2.2.Decoding

In the decoding phase, the first image of the video is given as
input to PredNet. The resulting prediction is corrected using the
error file recorded during the encoding phase. This image is
exactly equivalent to the image of the original video at t+1. That
image is then itself used as input for PredNet, and the process is
repeated until the end of the video (Fig. 5).

3. Discussion
We confirmed that our proposed encoding method allows for

lossless encoding of videos. As a prediction engine, PredNet
gives better results than the basic prediction engine used by the
MP4 standard, therefore once integrated to the MP4 algorithm it
should give much better compression rates than the original
MP4. This compression rate will vary depending on the contents
of the video and how “predictable” it is.

Our proposed method still has disadvantages: the engine is not
universal and must be trained before encoding, therefore the
compression rate will depend on the type of movie being
encoded. The network is optimised to run using batch processing
used in other Deep Learning networks, not for continuous runs,
therefore it can be slow on a standard computer.

As a future work, we propose to add time compression to our
method, by monitoring the error size during the encoding phase.
Instead of recording the error at each timestep, we would record
the error only when it is above a threshold. During the steps in
between, the network can just run on its own uncorrected
predictions.

References
R. Kanai, Y. Komura, S. Shipp, and K. Friston. Cerebral

hierarchies : predictive processing, precision and the
pulvinar. Philos Trans R Soc Lond B Biol Sci, 2015.

T. Wiegand, G. J. Sullivan, G. Bjontegaard, A. Luthra, Overview
of the H. 264/AVC video coding standard. IEEE Transactions
on circuits and systems for video technology, 13(7), 560-576,
2003.

W. Lotter, G. Kreiman, D. Cox, Unsupervised learning of visual
structure using predictive generative networks. arXiv preprint
arXiv:1511.06380, 2015.

W. Lotter, G. Kreiman, D. Cox, Deep predictive coding networks
for video prediction and unsupervised learning. arXiv
preprint arXiv:1605.08104, 2016.

A. Geiger, P. Lenz, C. Stiller, R. Urtasun. Vision meets robotics:
The KITTI dataset. International Journal of Robotics
Research (IJRR), 2013.

- ! -2

Fig. 4: Encoding. The predicted frame and the original frame are
compared, and the error between the two is saved. This is
repeated for each frame of the video. The encoded movie file
therefore only contains the error information.

Fig. 5: Decoding. The predicted output at t is corrected using the
known error previously encoded in the encoding phase. This
corrected output is then used as input for the next timestep. The
whole video can be reconstructed frame by frame this way.

Fig. 3: PredNet architecture. The transformed input from A is
compared with the prediction from R, and the resulting error
calculated by E is sent back to R and also serves as input A for the
upper layer L+1.

