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Team formation (TF) consists in finding the least expensive team of agents such that a certain set of skills is
covered. We formally introduce here recoverable team formation (RTF), a generalization of TF, which accounts for
the dynamic nature of the environment: some selected agents may unexpectedly become unavailable due to failure
or illness, and one is allowed to select afterwards additional agents to (re)-cover the set of skills. We analyze the
computational complexity of RTF, provide both complete and heuristic algorithms, and evaluate their performance.

1. Introduction

Team formation (TF) is the problem of selecting a team

of agents with minimum cost such that a certain set of skills

is covered∗1. This is an important problem in multi-agent

systems and has been studied in the contexts of RoboCup

rescue teams, Unmanned Aerial Vehicle operations, social

networks, online football prediction games, among others.

Moreover, TF is closely related to set covering and hitting

sets, well known NP-complete problems. More precisely,

we are given a set of agents and a set of skills to be covered.

Each agent possesses a subset of skills and is associated with

a cost. A subset of agents (referred to as a team) is said to

be efficient if for every required skill there is at least one

agent in the team possessing that skill. The goal is to select

an efficient team with minimum cost.

Once a team has been formed, we can expect it to undergo

changes with time. For example, agents may unexpectedly

become unavailable due to failure or illness, possibly mak-

ing the team no longer efficient. This results in additional

expenses, inconveniences, and in some applications in com-

plete system failure. Therefore, in addition to the team’s

cost, it can be of crucial importance to analyze its ability

to react to changes, that is, how resilient the team is.

One aspect of resilience for TF has been introduced in

[8], namely the concept of robustness. A team is said to be

k-robust if the team remains efficient even after k agents are

removed from it. Robustness is clearly a desirable property

as it allows a team to keep performing without taking any

measures after unfortunate changes happen. Interestingly,

the computational complexity of robust team formation is

not higher than for TF: both are NP-complete.

However, considering robustness alone may have the fol-

lowing drawback: while highly robust teams can easily

withstand unfortunate changes, this is achieved by intro-

ducing a high degree of redundancy to over-prepare for the

future, which may result in prohibitively expensive teams.

To circumvent this negative aspect while accounting for un-

∗1 In the literature sometimes the term task [8] is used instead
of skill, but the problem remains the same.

fortunate changes, we introduce the concept of recoverability

for TF. This concept has been considered in the literature

as another main feature of resilience [3, 6, 10], as the ca-

pacity to cope with unanticipated dangers after they have

become effectively manifested on the system, and described

as the ability of a system to return to an equilibrium state

after some temporary disturbance. Indeed, a resilient sys-

tem must find an appropriate balance between robustness

(sometimes called also resistance [10], see our related work

section) and recoverability. In TF, recoverability consists in

considering an additional cost that might need to be paid

to restore the team’s efficiency if k agents are removed from

the team. Our notion of recoverability here can be viewed

as a generalization of the notion of robustness, i.e., both

notions coincide when restoring the team’s initial efficiency

must not incur a cost. Considering recoverability allows for

more flexibility: whereas robustness underlies a fully proac-

tive strategy where we over-prepare for every possible future

event, recoverability provides a balance between proactive

and reactive approaches where we analyze both the initial

and the next-step cost that will be needed if an undesirable

event takes place and effectively damages the team.

The flexibility of our framework is paid by the increase of

the computational complexity - from NP- to ΣP
3 -hardness.

Thus, developing algorithms for recoverable team formation

(RTF) is harder than for TF and conventional techniques

for TF cannot be applied. To deal with the complexity shift,

we introduce a novel algorithm with two key components:

nonlinear cuts to prune teams with suboptimal substruc-

tures, and a search strategy to implicitly simplify the cuts.

We also propose a heuristic cut to provide a trade-off be-

tween computational time and solution quality.

2. (Robust) Team Formation

We give preliminaries on (robust) team formation. Basic

definitions and theorems are provided and we direct the

interested reader to [8] for more details and proofs.

Definition 1. (TF Problem Description) A TF problem

description is a tuple TF = 〈A,S, f, α〉 where A = {a1, a2,
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a0 a1 a2 a3 a4 a5

α(ai) {s0, s1} {s1, s2} {s0, s2} {s2} {s0} {s1}

f(ai) 5 5 4 3 3 3

h(ai) 10 10 8 3 3 +∞

Table 1: Illustrative example definition.

..., an} is a set of agents, S = {s1, s2, ..., sm} is a set of

skills, f : 2A → N is a so-called cost function, and α is a

mapping from A to 2S. T ⊆ A is called a team.

For simplicity we assume f(T ) =
∑

ai∈T f(ai)
∗2 when

T 6= ∅, and f(∅) = 0.

Definition 2. Team T is said to be c-costly if f(T ) ≤ c.

Definition 3. Team T is efficient if S =
⋃

ai∈T α(ai).

The decision problem for TF (labeled Skill Efficient Team

Formation - SETF), given a TF problem description and a

nonnegative integer c as input, asks if there exists a team

T ⊆ A such that T is c-costly and efficient.

Theorem 1. [8] SETF is NP-complete.

Definition 4. [8] A team T is said to be k-robust if for

every set of agents T ′ ⊆ T such that |T ′| ≤ k, the team

T \ T ′ is efficient.

Note that robustness generalizes efficiency (for k > 0).

The decision problem for robustness (labeled Skill Oriented

Robust Team Formation - SORTF), given a TF problem de-

scription and integers c and k, asks if there exists a team

T ⊆ A such that T is c-costly and k-robust.

Theorem 2. [8] SORTF is NP-complete.

The optimization variant of SORTF asks for a robust

team with minimum cost.

3. Recoverable Team Formation

We now introduce recoverable team formation (RTF), a

generalization of the standard TF problem: in addition to

the team’s initial cost we consider an additional cost called

recovery cost that represents the cost required to restore ef-

ficiency after any k agents are removed; efficiency is restored

by adding agents that have not been previously selected.

Definition 5. (Recoverable Team Formation Problem De-

scription) A RTF problem description is a tuple RTF =

〈A,S, f, α, h〉 where A = {a1, a2, ..., an} is a set of agents,

S = {s1, s2, ..., sm} is a set of skills, f : 2A → N∪ {+∞} is

the so called first-step cost function, α is a mapping from A

to 2S, and h : 2A → N∪{+∞} is the so-called second-step

cost function.

We now introduce the main new property.

∗2 Abusing notations, when a single agent ai is considered, we
often use the notation f(ai) instead of f({ai})

Team T1 = {a0, a1, a2} T2 = {a0, a1} T3 = {a3, a4, a5}
f(T ) 14 10 9

rec. cost 0 3 10

total cost 14 13 19

Table 2: Example for three teams and k = 1.

Definition 6. (Team Recoverablility) Given a RTF

problem description RTF = 〈A,S, f, α, h〉 and an efficient

team T , we say that T is 〈k, c2〉-recoverable if for every

T ′ ⊆ T such that |T ′| ≤ k, there exists Trec ⊆ (A \ T )

such that the team (T \ T ′) ∪ Trec is an efficient team and

h(Trec) ≤ c2. Additionally, if case f(T ) ≤ c1, then T is

said to be 〈c1, k, c2〉-recoverable.

Similarly as before, we have assume that f(T ) =∑
ai∈T f(ai) and h(T ) =

∑
ai∈T h(ai) when T 6= ∅, and

f(∅) = h(∅) = 0. The recovery cost of a team is com-

puted as follows: for every removal of k agents from the

team, we calculate the minimum second-step cost (given by

h) necessary to restore the lost efficiency and then take

the maximum out of all values. Intuitively, this repre-

sents the amount that needs to be paid in the worst case

when k agents are removed from the team. While robust-

ness requires a team that still remains efficient after any k

agents are removed, recoverability searches for a team that

is “harmless” to repair if k agents are lost.

Let us consider the RTF problem with k = 1, i.e., where

the recovery cost is analyzed when removing a single agent

from a team. The set of agents and skills are defined as

A = {a0, . . . , a5} and S = {s0, s1, s2}. Table 1 depicts the

function α that maps every agent ai ∈ A to a subset of S

and its costs associated through the first- and second-step

functions f and h. The total cost is the sum of both costs.

The first-step cost of the team T1 = {a0, a1, a2} is com-

puted as: f(T1) = f(a0) + f(a1) + f(a2) = 14. T1 is 1-

robust, i.e., it remains efficient regardless of which single

agent is removed from T1. To determine the recovery cost

of the second team T2, we take into account every possi-

ble agent removal from T2. Removing the agent a0 from

T2 would result in a team which does not have skill s0
covered. To restore its efficiency, the best way to do so

would be to add the agent a4, resulting in a recovery cost

of h(a4) = 3. Likewise, removing a1 would lead to a recov-

ery cost of h(a3) = 3. The recovery cost of the team is then

calculated as: max(h(a3), h(a4)) = 3. The first team is ro-

bust, but initially expensive (f(T1) = 14). The total cost

of T2 is lower than for T1, making it appealing if robust-

ness is not necessary. The third team has low initial cost

and high recovery cost. There is no agreed notion of “best

team” here since it depends on the concrete application,

users, budgets, and risk management strategies. Providing

multiple teams to choose from, each with its own unique

properties, allows for better decision making.

We show that RTF is a generalization of robust TF.

Proposition 1. Let 〈A,S, F, α, h〉 be a RTF problem de-

scription such that h is defined for each ai ∈ A as h(ai) > 0.

Then for every efficient team T ⊆ A and every k ≥ 0, T is

k-robust and c-costly if and only if T is 〈c, k, 0〉-recoverable.
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4. Computational Complexity

This section provides a computational complexity analy-

sis of the recoverability issue. More precisely, we consider

the following decision problem:

Definition 7. (RTF problem)

• Input: A RTF problem description RTF = 〈A,S,
f, α, h〉 such that f, h are computable in polynomial

time, and three non-negative integers c1, k, c2.

• Question: Does there exist an efficient team T ⊆ A

such that T is 〈c1, k, c2〉-recoverable?

We assume that the reader is familiar with the com-

plexity class NP (see [9] for more details). Higher com-

plexity classes are defined using oracles. In particular,

ΣP
2 = NPNP corresponds to the class of decision pro-

blems that are solved in non-deterministic polynomial time

by deterministic Turing machines using an oracle for NP

in polynomial time, and ΣP
3 is the class of decision pro-

blems that are solved in non-deterministic polynomial time

by deterministic Turing machines using an oracle for ΣP
2 in

polynomial time. We get the following complexity result:

Proposition 2. RTF is ΣP
3 -complete.

Intuitively, the increase in complexity stems from the fact

that for each feasible team T , one needs to consider every

possible removal of k agents and compute its recovery cost.

The number of combinations is exponential with respect

to k, and for each removal computing the recovery cost

amounts to solving a standard TF problem, which is itself

NP-hard. In a sense, the parameter k is the reason for

the complexity shift. If we consider k as a constant that is

part of the problem definition (denoted as k-RTF), rather

than as an input parameter, we obtain a significant drop in

computational complexity:

Proposition 3. For k ≥ 0, k-RTF is NP-complete.

5. Algorithms

We now describe our complete and heuristic algorithms.

The objective is to minimize the sum of the first- and

second-step costs. An outline is given in Algorithm 1. Iter-

atively, a single team is considered (line 4) (Tcur ⊆ A) and

its recovery cost is determined (lines 5-10). The recovery

cost is calculated by enumerating subsets ak of k agents

from Tcur. For each subset ak, a recovery cost specific to

that set is calculated by removing ak from Tcur and then

computing the recovery team Trec ⊆ A \ Tcur with mini-

mum cost with respect to the second-step cost function h

such that Tcur \ ak ∪ Trec is efficient (line 7). The high-

est value among computed recovery costs for the subsets ak
is taken to be the recovery cost for team Tcur. The team

Tcur is then recorded as the best team found if its costs are

lower than the previous best (line 11-14). Lastly, a key step

is executed: cuts are generated to prune teams that share a

similar substructure as Tcur. The choice of cuts determines

whether the algorithm is (in)complete.

We introduce the following notation: C2(T ) is second-

step cost of T , Ctotal(T ) = f(T ) + C2(T ), C2(T, ak) is the

Algorithm 1: Algorithm Outline for RTF

input: RTF = {A,S, f, α, h}
ouput: Tbest with min cost (f(Tbest) + C2(Tbest))

1 begin

2 Tbest ←− ∅; c1 ←− +∞; c2 ←− +∞
3 while not all feasible teams have been explored

do

4 Tcur ←− selectNewTeam() // TF

5 cmax
rec ←− 0; a∗k ←− ∅

6 foreach ak ∈ {a : a ⊆ Tcur ∧ |a| = k} do

// calculate the minimum recovery cost wrt

removals of ak

7 crec = minRecoveryCost(Tcur, ak, RTF )

8 if crec ≥ cmax
rec then

9 cmax
rec ←− crec

10 a∗k ←− ak
11 if f(Tcur) + cmax

rec < c1 + c2 then

12 c1 ←− f(Tcur)

13 c2 ←− cmax
rec

14 Tbest ←− Tcur

// prune search space based on team T

15 generateCut(Tcur, a
∗
k, Tbest, RTF )

16 return Tbest

second-step cost associated for the specific case when agents

in ak are removed from T , M(S) is the set of agents that

posses at least one of the skills in S, and S(T, ak) is the set of

skills that become uncovered when agents in ak are removed

from T , Tbest is the best team found so far during the search,

and lastly Cmax
2 (T, Tbest) = Ctotal(Tbest) − f(T ) − 1 is the

threshold value of the recovery cost for team T in order

to be considered better than Tbest. Recall that computing

C2(T, ak) amounts to solving the team formation problem

with the skills S(T, ak) and agentsM(S(T, ak))\T . Let Tcur

be the currently analyzed team, a∗k be the set of agents such

that C2(Tcur, a
∗
k) > Cmax

2 (Tcur, Tbest), and T is any future

team we might consider. We now present the cut:

Cmax
2 (T, Tbest) < C2(Tcur, a

∗
k)⇒

∑
i∈M(S(T,a∗

k
))\a∗

k

xi ≥ 1 (1)

The cut forces the inclusion of at least one agent from

M(S(T, a∗k))\a∗k under the condition that the left-hand side

is satisfied, since otherwise the resulting recovery cost will

be greater than the threshold value. Essentially, the partial

assignment of Tcur concerning agents from M(S(T, a∗k))\a∗k
is responsible for the high recovery cost. No solution better

than Tbest is pruned, hence the algorithm is complete.

The resulting cut is nonlinear. Traversing the search

space by considering teams in increasing first-step cost al-

lows us to omit the left-hand side, as it becomes redundant

(always satisfied), effectively linearizing the cut. Linear cuts

are typically easier to solve in practice.

Our heuristic cut provides means of reducing the compu-

tational time at the expense of possibly losing optimality:

−
∑
i∈a∗

k

xi ≥ 1− |a∗k| (2)
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Figure 1: Comparison on instances with 150 agents and 30

skills. Average for ten instances presented.

The intuition is that the removal agents a∗k are the cause

of high recovery costs, so by removing all teams with a∗k
the same problem is not encountered again. In the exper-

imental section, we show that good solutions can still be

obtained when using this cut. The heuristic cut is gener-

ated in addition to the base cut in our heuristic algorithm.

6. Experimental Results

The goal of our experimentation is to show that a recov-

erable team is cheaper than a robust one, by is harder to

compute. Yet solutions for reasonably sized teams can be

found, despite RTF being a ΣP
3 -hard problem. The results

are presented in Figure 1 and Table 3.

We considered small, medium, and large random in-

stances. The small instances (from 10 to 30 agents and

3 to 11 skills) correspond to the robust TF instances given

in [8]. The medium ones (from 100 to 150 agents and 20

to 30 skills) are set covering instances used in [2, 11]. The

large ones (1000 agents and 200 skills) are classical instances

found in the OR Library [1] under the scp4x package, used

in set covering works (e.g., [5, 7]). In our experiments we

set h = f (recall Definition 6). All tests were performed on

an Intel Core i3-2330M CPU @ 2.20GHz with 4 GB RAM

using a computation limit of one hour. Our algorithm is

implemented in C++. To compute solutions for robust TF,

we used Cplex and integer programming, as it proved to be

significantly faster than the previous approaches proposed

in [4] and [8].

The comparison with robustness is shown in Figure 1 for

instances with 150 agents and 30 skills (the values are av-

eraged over ten instances). The small instances from [8]

are solved within seconds for k = {1, 2, 3}. Overall, RTF

has a significantly lower cost than robust TF for the same

value of k, and the gap increases as k grows. Therefore, for

applications where recoverability is sufficient, more desir-

able results can be achieved with recoverability than with

robustness. Robustness provides desirable properties and

is easier to compute, but it is noticeably more expensive.

The parameter k plays an important role in the computa-

tional time. This is to be expected given Proposition 3.

The heuristic cut (Equation 2) provides means to combat

the increase in computational time (see next section).

We considered adding the heuristic cut (Equation 2) in

addition to the base cut (Equation 1), and our special search

strategy (going through teams in increasing first-step cost).

We present detailed results in Table 3 on a few instances

and similar results are obtained for other instances. Overall,

both our search strategy and our heuristic cut become more

important as the size of the instance and k grow, reducing

(|A|,|S|) k (s,h) (s,h) (s,h) (s,h)

(150, 30) 1 1478 (26s) 1536 (20s) 1478 (5s) 1536 (1s)

(150, 30) 2 1828 (260s) 1828 (60s) 1828 (350s) 1828 (9s)

(150, 30) 3 1962 (1820s) 1962 (160s) 1962 (2640s) 1962 (270s)

(1000, 200) 1 487 (45s) 487 (20s) 487 (20s) 487 (4s)

(1000, 200) 2 532 (2700s) 535 (260s) 532 (3600sto) 535 (450s)

Table 3: Different variants of our algorithm. Crossing let-

ters s and h indicates whether our search strategy and/or

the heuristic cut is used.

the execution time while maintaining high solution quality.

We attribute this behavior to the linearization of the cuts

and the search space reduction, as discussed in Section 5.

7. Conclusion

We introduced recoverable team formation (RTF), a

novel problem where in addition to the team’s cost we exam-

ine the cost related to restoring functionality after k agents

have been removed. We provided a framework for building

teams resilient to change, which is more general than the

work in [8], at the expense of a complexity shift to ΣP
3 -

hardness. Using our proposed cuts and search strategy, our

algorithms were able to solve reasonably sized problems de-

spite the high computational complexity. Our results have

shown the drastic difference in cost between robustness and

recoverability, in favor of recoverability. Computing multi-

ple teams, stochastic settings, and introducing recoverabil-

ity to other problems are all topics for future work.
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