
Comparing Multi-Objective Selection Methods

using a Simulation of Dynamic Sensor Network

Maxime Clement∗1∗3 Tenda Okimoto∗2 Katsumi Inoue∗1∗3

∗1National Institute of Informatics ∗2Kobe University
∗3SOKENDAI (The Graduate University for Advanced Studies)

Multi-Objective Distributed Constraint Optimization Problems (MO-DCOPs) can model problems where agents
must coordinate to optimize multiple costs. As problems can involve conflicting objectives that cannot be minimized
simultaneously, solving an MO-DCOP usually consists in finding a set of solutions offering various trade-offs of
conflicting objectives. In real-world problems, a single solution is usually selected for implementation and many
different methods have been proposed to perform this selection. If the problem is dynamic and changes over time,
this selection can not only impact the costs for the current state of the problem but also for the future state of
the problem. In this paper, we compare the impact of different multi-objective selection methods on a dynamic
simulation of mobile sensor teams and our experiments confirm that the selection method can have an unforeseen
impact on the quality of the system in the long run.

1. Introduction

Many real world problems involve multiple criteria that

should be considered separately and optimized simultane-

ously. A Multi-Objective Distributed Constraint Optimiza-

tion Problem (MO-DCOP) [2, 3] allows us to represent situ-

ations where some agents have to coordinate their values to

minimize multiple objectives. In MO-DCOPs, since trade-

offs may exist among the objectives, there does not gener-

ally exist a unique ideal assignment, which minimizes all

objectives simultaneously. Thus, the optimal solution of an

MO-DCOP is characterized by the concept of Pareto opti-

mality. A solution is said to be Pareto optimal if there does

not exist another solution better or equivalent for all objec-

tives and strictly better for at least one objective. Solving

a multi-objective problem is commonly seen as finding its

set of Pareto optimal solutions.

While most multi-objective algorithms find a set of so-

lutions, a single solution is needed in practice, often re-

quiring an additional selection process that is well studied

in multi-criteria decision making (MCDM). Ideally, this se-

lection should reflect the preferences of a decision maker

(DM), either by directly letting the DM pick the solution

or by trying to model his preferences using mathematical

functions, typically using weighted [6] or reference point-

based [4] methods.

However, for dynamic problems that change over time

and require to change the solution multiple time, the long

term impact of the multi-objective selection process might

be difficult to foresee by a human and should be studied

in advance. For example, let us consider a mobile sensor

network, a representative application of MO-DCOPs. We

consider an environment with multiple targets that we want

to track with each sensor being able to track the targets

that are in sensing range. This problem is dynamic as the

targets might move and we should adjust the position of the

Contact: maxime-clement@nii.ac.jp

sensors accordingly. We want to optimize the tracking of the

targets but at the same time, we do not want to move the

sensors too much (to limit the use of energy and to increase

their durability for example). Let us consider two different

preferences for these two objectives. First, we can imagine

that the decision maker strictly cares about tracking the

targets, almost ignoring the cost of moving the sensors. In

this case, we always select a solution that gives us the best

tracking, meaning that if a single targets changed position,

we are willing to drastically move the sensors just to obtain

a small increase in the tracking quality. This can lead to

very costly solutions in the long term, which might have

been unforeseen by the DM. Second, we can imagine the

opposite preferences where the DM mostly cares about the

cost of moving the sensors. In this case, we might start

selecting solutions whose quality are acceptable while only

slightly moving the sensors. As time passes however, if

several targets changes position too fast, the cost of moving

the sensors might become high and the preference model

might end up selecting solutions that do not keep track of

any targets.

In this paper, we use a dynamic simulation of the Mo-

bile Sensor Team [8] (MST) problem to show the differ-

ent results obtained using different multi-objective decision

making methods. We first present multi-objective decision

making methods and present the ones we consider in our

dynamic case. We then propose a multi-objective version

of MST that we use to experiment with different decision

methods and exhibit the impact it has on the system in the

long run. We conclude by proposing future research topics

that we feel are promising.

2. Preliminaries

2.1 Multi-objective Distributed Constraint

Optimization Problem

Definition 1 (Multi-Objective DCOP) A Multi-

Objective Distributed Constraint Optimization Prob-

The 31st Annual Conference of the Japanese Society for Artificial Intelligence, 2017

- 1 -

3N1-4

The 31st Annual Conference of the Japanese Society for Artificial Intelligence, 2017

3N1-4

v1 v2

v3

v1 v2 cost v2 v3 cost v1 v3 cost

a a (5,2) a a (0,1) a a (1,0)

a b (7,1) a b (2,1) a b (1,0)

b a (10,3) b a (0,2) b a (0,1)

b b (12,0) b b (2,0) b b (3,2)

Figure 1: Example of bi-objective DCOP.

lem (MO-DCOP) [2, 3] is defined as a tuple

MO-DCOP = (X,V,D, C,F) where X = {x1, . . . , xn}

is a set of agents, V = {v1, . . . , vn} is a set of variables,

D = {D1, . . . , Dn} is a set of domains, C = {C1, . . . , Cc} is

a set of constraint relations, and F = {F1, . . . , Fm} is a set

of sets of cost functions. For an objective o (1 ≤ o ≤ m),

a cost function fo
j : ×∀vi∈Cj

Di → R≥0, f
o
j ∈ Fo, represents

the cost generated by constraint Cj for the objective l.

An instantiated set of variable A ⊆ V is called an assign-

ment. A is said to be partial if A ⊂ V and complete if

A = V . When an assignment is complete, its quality can

be represented by a cost vector R(A) = (R1(A), . . . , Rm(A))

where

R
l(A) =

∑

Cj∈C,

f
l
j(A)

Finding an assignment that minimizes all objective func-

tions simultaneously is ideal. However, trade-offs can exist

among the different objectives and there usually does not

exist such an ideal assignment. Therefore, optimal solu-

tions of an MO-DCOP are characterized using the concept

of Pareto optimality.

Definition 2 (Dominance) For an MO-DCOP and two

cost vectors R(A) and R(A′), we can say that R(A) domi-

nates R(A′), denoted by R(A) ≺ R(A′), iff R(A) is partially

less than R(A′), i.e., it holds Rl(A) ≤ Rl(A′) for all objec-

tives l, and there exists at least one objective l′, such that

Rl′(A) < Rl′(A′).

Definition 3 (Pareto optimal solution) For an MO-

DCOP, an assignment A is said to be a Pareto optimal so-

lution, iff there does not exist another assignment A′, such

that R(A′) ≺ R(A).

Definition 4 (Pareto Front) For an MO-DCOP, the

Pareto front is the set of cost vectors obtained by the Pareto

optimal solutions.

Solving an MO-DCOP consists in finding its Pareto front

whose size is, in the worst case, exponential in the number

of variables.

An MO-DCOP can be represented using a constraint

graph where nodes and edges represent the variables and

constraints of the problem.

Example 1 (MO-DCOP) Figure 1 shows an example of

MO-DCOP with two objectives, three binary constraints,

and where each variable takes its value from a discrete do-

main {a, b}. The Pareto optimal solutions of this problem

are {{(v1, a), (v2, a), (v3, a)} and {(v1, a), (v2, b), (v3, b)}},

and the corresponding Pareto front is {(6, 3), (10, 1)}.

2.2 Dynamic Multi-Objective Distributed

Constraint Optimization Problem

A Dynamic Multi-Objective Distributed Constraint Op-

timization Problem (DMO-DCOP) is the extension of an

MO-DCOP. A DMO-DCOP is defined by a sequence of

MO-DCOPs.

< MO-DCOP1,MO-DCOP2, ...,MO-DCOPt > . (1)

In this paper, we consider a reactive case where a problem

MO-DCOPi is unknown until a solution is implemented for

problem MO-DCOPi−1.

In case all the MO-DCOP in the sequence are known

in advance (i.e., we know the nature and the order of all

the changes), a proactive approach can be used, and was

discussed in a previous work [1].

3. Multi-Objective Decision Making

It is usually considered that solving an MO-DCOP con-

sists in finding its Pareto front and most MO-DCOP algo-

rithms will find a set of solutions that offers different trade-

offs of objectives. Since in practice only one solution can

be implemented, it is assumed that an additional decision

method will perform the selection of one solution from the

Pareto front. This decision should be in accordance with

the preferences of a decision maker (DM), either by creat-

ing some preference model or by interacting with the DM

during the solving process.

Such methods have been reviewed in the context of evo-

lutionary multi-objective optimization [5] and have been

classified into a priori, interactive, and a posteriori meth-

ods. With a priori methods, the preferences of the DM

are known in advance and are expressed using some mathe-

matical function. This sometime allows us to transform the

multi-objective optimization problem into a single-objective

problem, using scalarization techniques for example. With

interactive methods, queries to the DM are made during

the run of the algorithm in order to help identify its pre-

ferred solution. With a posteriori methods, a selection is

made after the set of optimal solutions was found, usually

by asking the DM to select his preferred solution from this

set.

4. Multi-Objective Decision Making

for Dynamic MO-DCOPs

In dynamic problems, a new solution should be imple-

mented as soon as possible after changes occurred to the

- 2 -

problem. This makes interactive and a posteriori meth-

ods poorly suited for dynamic environments as a decision

maker might not always be available or might take too

much time to select a solution. Thus, we propose to use

a priori methods that are automated and thus well suited

for dynamic problems. We consider the weighted-sum, a

popular aggregation technique that is widely used to tackle

multi-objective problems. Such technique requires to pro-

vide a weight for each objective of the problem and effec-

tively transforms the multi-objective problem into a mono-

objective problem but guarantees to find a Pareto optimal

solution.

Definition 5 (Weighted-Sum Selection) Given a

problem P and a set of weights Ω = (ω1, . . . , ωm), we select

a solution SΩ of P such that:

SΩ = argmin
S

m∑

o=1

R
o(S)× ωo

The limit of such selection methods is that they are static

and only consider the immediate utility obtained. How-

ever, when working in a dynamic environment, the selection

method can have unforeseen consequences on the problem

which can lead to a decrease of the solution quality over

time. Thus, it can be important to use dynamic decision

methods that alternate between different strategies.

Definition 6 (Alternating Multi-Objective Selection)

An alternating multi-objective decision method is a se-

lection method that alternates between different strategies

based on some conditions or probabilities.

In this paper, we consider using multiple weighted-sum se-

lection with equiprobability.

Definition 7 (Alternating Weighted-Sum Selection)

Given sets of weights {Ωi,Ωi+1, . . .}, an alternating

weighted-sum method A(Ωi,Ωi+1, . . .) is a selection method

that randomly uses one of the set of weights to perform a

weighted-sum selection.

5. Experimental Evaluation

5.1 Simulation

To compare the multi-objective decision making methods

discussed in the previous section, we use a dynamic simu-

lation of the Mobile Sensor Team problem [8]. In this sim-

ulation, we consider a set of sensors X = {x1, . . . , xn}, and

a set of targets Y = {y1, . . . , yl}, in a two dimensional Eu-

clidean space using d(.) as distance function. At a time step

s (1 ≤ s ≤ t), the position of a sensor or target is denoted by

ps(.). Each sensor xi has a sensing range SRi and a mobility

range MRi. Each target yj has a tracking requirement TRj

indicating how many sensors should cover the target. We

say that a sensor xi covers target yj if d(ps(xi), ps(yj)) ≤

SRi and denotes SR(s,j) the set of agents that cover tar-

get yj at time step s. At each time step s of this problem,

we need to find a new position ps+1(xi) for each sensor

such that d(ps(xi), ps+1(xi)) ≤ MRi. The goal is then to

find positions that minimize both the remaining tracking

requirement RTRs =
l∑

j=1

max(0, TRj − |SR(s+1,j)|), and

the movement cost MCs =
n∑

i=1

d(ps(xi), ps+1(xi)).

At each time step s, MO-DCOPs is constructed from

the current state of the simulation A variable in the MO-

DCOP corresponds to a sensor of the simulation and we

use as domain all possibles positions offering coverage of

a subset of the targets. To avoid too large domains, we

discard subsets that are included in other subsets and if

two positions offer the coverage of the same subsets, we

keep the one that yield the minimum movement cost. Then,

for each target yj , a constraint is constructed between the

sensors that can cover the target after any movement, i.e.,

{xi|SRi +MRi ≤ d(ps(xi), ps(yj))}.

5.2 Settings

We implemented our simulation using NetLogo [7], using

n = 10 sensors, l = 10 targets, t = 40 time steps, a sensing

range of SRi = 5 and a mobility range MRi = 5 for all

agents, a tracking requirement TRj = 3 for all sensors, and

a grid space environment of 10×10. The initial positions of

the targets and sensors (p0(.)) are randomly generated and

describe the initial state of the problem. At each new time

step, after the new positions of the sensors were adopted, we

randomly move each target such that it moves away from

the closest sensor over a distance of 3.

We consider three sets of weights for the weighted-sum

selection. First, we consider that both objectives are of

equal importance and use Ω1 = (0.5, 0.5). Then, we want

to put a bit more emphasis on the first objective (the re-

maining tracking requirement) and use Ω2 = (0.75, 0.25).

Finally, we consider the extreme case where the movement

cost is completely ignored and only the tracking require-

ment is considered, using Ω3 = (1, 0). In addition to these

methods, we consider an alternating method A(Ω1,Ω2) that

uses Ω1 or Ω2 with equiprobability.

5.3 Results

Figure 2 and Figure 3 show the evolution of the remaining

tracking requirement and movement cost over the 40 time

steps. These results are averages over 50 simulation runs

using different initial positions for the targets and sensors.

First, we notice that even though Ω1 is supposed to care

about both objectives equally, the remaining tracking re-

quirement (RTR) increases significantly over the course of

the simulation, from RTR1 ≈ 18 up to RTR35 ≈ 28, while

the movement cost (MC) decreases only slightly, varying

between 5 and 0. In comparison, when we observe both

Ω2 and Ω3, which care more about the remaining tracking

requirement, we observe that both objectives are quite sta-

ble, remaining around the same values over the whole sim-

ulation. These observations indicate that the preferences

represented by Ω2 and Ω3 are well matched throughout the

simulation while Ω1 cannot properly represent the given

preference in the long run. This is further supported by

the increase in the value of the weighted-sum when using

Ω1, which goes from around 11.5 to 14, indicating a clear

- 3 -

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 5 10 15 20 25 30 35 40

R
em

ai
ni

ng
 T

ra
ck

in
g

R
eq

ui
re

m
en

t

s

Ω1 = (0.5,0.5)
Ω2 = (0.75,0.25)

Ω3 = (1,0)
A(Ω1,Ω2)

Figure 2: Comparison of Remaining Tracking Requirement

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40

M
ov

em
en

t C
os

t

s

Ω1 = (0.5,0.5)
Ω2 = (0.75,0.25)

Ω3 = (1,0)
A(Ω1,Ω2)

Figure 3: Comparison of Movement Cost

decrease in solution quality over time.

Let us now look at our alternative method which ran-

domly uses Ω1 or Ω2. With this method, both objectives

are quite stable, with RTR ≈ 18 and MC ≈ 10. We no-

tice that the value of RTR starts at about the same value

as when using Ω1 alone but without increasing with time.

When compared to the results we obtained with Ω2 alone,

we see that the value of MC is reduced by around 5 while

the value of RTR is increased by around 4. This shows that

by alternating between two multi-objective decision meth-

ods, we can obtain a new trade-offs of the objective that is

more stable than when using a single decision method.

6. Conclusion

In this paper, we discussed the importance of defining

multi-objective decision making methods in dynamic prob-

lems. Using Multi-Objective Distributed Constraint Opti-

mization Problems and the Mobile Sensor Team applica-

tion, we considered various methods to select the solution

to implement within the Pareto set. We then used a sim-

ulation to experiment with different methods and showed

that, in dynamic problems, simple selection methods are

not always suited to represent the preferences of a deci-

sion maker. We showed that some trade-offs of objectives

can become harder to obtain or can lead to poor solutions

quality. However, we showed that our proposed alternating

selection method can obtain solutions close to those trade-

offs while providing a stable quality.

In future works, we want to study more cases where multi-

objective decision making has a strong impact on a dynamic

problem. This can be the opportunity to evaluate in more

depths the limit of traditional decision making and pro-

pose additional methods that would prove more suited to

dynamic problems.

References

[1] M. Clement, T. Okimoto, N. Schwind, and K. Inoue.

Finding resilient solutions for dynamic multi-objective

constraint optimization problems. In ICAART 2015 -

Proceedings of the International Conference on Agents

and Artificial Intelligence, Volume 2, Lisbon, Portugal,

10-12 January, 2015., pages 509–516, 2015.

[2] F. M. D. Fave, R. Stranders, A. Rogers, and N. R. Jen-

nings. Bounded decentralised coordination over multi-

ple objectives. In Proceedings of the 10th International

Conference on Autonomous Agents and Multiagent Sys-

tems, pages 371–378, 2011.

[3] T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and

H. Matsuo. Distributed search method with bounded

cost vectors on multiple objective dcops. In Proceedings

of the 15th International Conference on Principles and

Practice of Multi-Agent Systems, pages 137–152, 2012.

[4] T. Okimoto, N. Schwind, M. Clement, and K. In-

oue. Lp-norm based algorithm for multi-objective dis-

tributed constraint optimization. In Proceedings of the

13th International Conference on Autonomous Agents

and Multiagent Systems, pages 1427–1428, 2014.

[5] R. C. Purshouse, K. Deb, M. M. Mansor, S. Mostaghim,

and R. Wang. A review of hybrid evolutionary multi-

ple criteria decision making methods. In 2014 IEEE

Congress on Evolutionary Computation (CEC), pages

1147–1154, 2014.

[6] N. Schwind, T. Okimoto, S. Konieczny, M. Wack, and

K. Inoue. Utilitarian and egalitarian solutions for multi-

objective constraint optimization. In Proceedings of the

26th IEEE International Conference on Tools with Ar-

tificial Intelligence, pages 170–177, 2014.

[7] S. Tisue and U. Wilensky. Netlogo: A simple environ-

ment for modeling complexity. In International con-

ference on complex systems, volume 21, pages 16–21.

Boston, MA, 2004.

[8] R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, and

K. Sycara. Distributed constraint optimization for

teams of mobile sensing agents. Autonomous Agents

and Multi-Agent Systems, 29(3):495–536, 2015.

- 4 -

