
Learning Syntactically Plausible Word Representations

by Solving Word Ordering

Noriki Nishida Hideki Nakayama

Graduate School of Information Science and Technology
The University of Tokyo

Syntactic information is crucial to capture sentence structures such as word order. However, recent works on
learning distributed word representations do not model word order explicitly. As the ability to represent syntactic
information is missing in these embeddings models, the vectors learned with these methods are suboptimal for
syntax-related tasks. In this paper, we propose a new approach to learning syntactically plausible word represen-
tations. The proposed method learns word embeddings by solving word ordering tasks using pointer networks.
We evaluate our approach in comparison with prior works on part-of-speech tagging and word analogy task. The
experimental results demonstrate that the proposed method produces vector spaces that are capable of capturing
syntactic regularities better than existing methods.

1. Introduction

Various approaches for learning distributed word

representations have been proposed in recent years.

However, almost all existing methods such as Skip-

Gram/CBOW [Mikolov 13a] and GloVe [Pennington 14]

only consider co-occurrences between two words, and ig-

nore word order which is an indispensable resource for

learning syntactic representations of words. The vectors

learned by these methods are known to be suboptimal

for syntax-related tasks such as part-of-speech tagging and

parsing [Andreas 14].

Word ordering tests, or linearization, are commonly used

to evaluate students’ ability of language. Suppose that we

are given a set of out-of-order words {“yesterday”, “ate”,
“.”, “fish”, “john”}, which are tokens in a original sentence.

As we know the part-of-speech tag of each word and can eas-

ily predict the structure of the original sentence from the

information, the candidate answers are narrowed down to

two: “Fish ate John yesterday.” or “John ate fish yester-

day.”. By considering the meaning of each word and check-

ing the sentence meaning against our common-sense knowl-

edge, we can finally recover the original sentence: “John

ate fish yesterday.”. We depict the above explanation in

Figure 1. Of course, it might not be necessary for comput-

ers to mimic exactly the same reasoning process described

above. However, the knowledge about words used in the

above example is necessary to solve the problem.

Inspired by this observation, the fundamental question

we want to explore in this paper is whether the word order-

ing task can be an objective for an acquisition of syntactic

knowledge about words. Our underlying hypothesis is that,

if we can obtain machine learning models such as neural

networks which can solve word ordering, the models must

have learned representations capturing syntactic informa-

tion of words. To this end, we modify the recently proposed

pointer network (Ptr-Net) [Vinyals 15] to solve word order-

Contact: {nishida, nakayama}@nlab.ci.i.u-tokyo.ac.jp

Figure 1: Illustration of word ordering task. The goal of this

task is to predict an original order of a shuffled sentence.

Our underlying hypothesis is that doing well on this task

requires knowledge (especially syntactic knowledge) about

words. In this paper, our goal is to build syntactic word

representations through training machine learning models

(e.g., neural networks) to solve the word ordering task.

ing task efficiently. The model consists of two components:

the word embedding part (encoder) and the ordering part

(decoder), which are jointly trained on the word ordering

task.

To evaluate our approach, we quantitatively compare our

method with previous word embedding models on part-of-

speech tagging and word analogy task. The experimen-

tal results demonstrate that our approach is competitive

with or outperforms the previous methods on these syntax-

related tasks.

2. Approach

In this section, we will give a precise description of the

pointer network which we extend to solve word ordering

efficiently.

1

The 31st Annual Conference of the Japanese Society for Artificial Intelligence, 2017

4A2-3



Figure 2: Overall view of the word ordering model. Given

a set of input words X , an encoder (orange) map the words

to low-dimensional vectors independently with a function

E. Then, we summarize the representations and compute

the initial hidden state d0 with a function G. An decoder

(green) generates an output sequence of selection decisions

over input words with respect to the current state dj . D

denotes a state update function, and S is a score function.

2.1 Encoder
We illustrate our modified Ptr-Net in Figure 2. Given a

set of shuffled words X = {w1, . . . , wT }, the encoder net-

work aims to produce a set of fixed-dimensional vectors

{e1, . . . , eT } where ei ∈ Rd corresponds to the word wi.

To this end, we first embed every single word wi to m-

dimensional vector independently, i.e.

vi = EθE (wi) ∈ Rm, (1)

where EθE is a word embedding function and θE is the

parameter of EθE .

The original Ptr-Net of [Vinyals 15] uses an LSTM to

encode each word with contextual information as follows:

ei = LSTMenc(vi, ei−1) ∈ Rd. (2)

In the word ordering task, however, the order of the in-

put sequence {w1, . . . , wT } to the LSTMenc is meaningless.

Nonetheless, the representation ei depends on the order

of {w1, . . . , wi−1} according to Eq. (2). In addition, this

order-dependence during encoding is problematic for learn-

ing generalized word representations due to data sparseness.

In order to prevent such undesirable behavior, we eliminate

the LSTMenc from Eq. (2) and simplify the encoder as fol-

lows:

ei = vi = EθE (wi). (3)

In Eq. (3), the representation ei does not depend on the

input order anymore, which is suitable for the word ordering

task.

2.2 Decoder
The decoder network aims to generate an output se-

quence of selection decisions (y1, . . . , yT ) over the input

elements, conditioned on the representations {e1, . . . , eT }

produced by the encoder network. Here (y1, . . . , yT ) is a

sequence of T indices, each between 1 and T . To reorder

the set of words X = {w1, . . . , wT }, we need to feed the

information about X to the decoder network. To this end,

we initialize the hidden state of the decoder LSTM by using

a function GθG :

d0 = GθG({e1, . . . , eT }) ∈ Rd, (4)

where θG denotes the parameter of GθG . We formalize the

function GθG as a simple vector summation followed by a

non-linear transformation:

GθG({e1, . . . , eT }) = tanh(WG

T∑
i=1

ei + bG) (5)

where WG ∈ Rd×m and bG ∈ Rd are a projection matrix

and a bias vector.

The j-th hidden state is computed as follows:

dj = DθD (eyj−1 ,dj−1), (6)

where yj−1 ∈ {1, . . . , T} denotes the index of the word se-

lected at the previous step (j − 1). In this paper we use an

LSTM as the function DθD , and θD denotes the parameters

of the LSTM.

Then, the model predicts a selection distribution over the

input words:

Pr(i|dj) =
exp(SθS (ei,dj))∑T

k=1 exp(SθS (ek,dj))
. (7)

where SθS is a score function that calculates a selection

score of the candidate word wi with respect to the current

hidden state dj . Finally, at j-th decoding step, we select

the index that maximizes the Eq. (7) as follows:

yj = argmax
i∈{1,...,T}

Pr(i|dj). (8)

Here yj represents the index of the selected word wyj ∈
{w1, . . . , wT }.

2.3 Loss Function
Our pointer network consists of four parameterized func-

tions: EθE , GθG , DθD and SθS . The parameters θ =

{θE ,θG,θD,θS} are jointly optimized by minimizing the

negative log-likelihood:

L(θ) = 1

N

N∑
n=1

T∑
j=1

− log P(t
(n)
j |d(n)

j ) (9)

where N is a mini-batch size, and t
(n)
j ∈ {1, . . . , T} denotes

an index of the word which should be placed at j-th position

in the n-th sentence.

We also use the retrofitting technique [Faruqui 15] to en-

rich our syntax-focused word representations with distribu-

tional semantics. We initialize our word embedding param-

eters θinit
E with the vectors learned by the SGNS model (See

Section 4.1), and add the following penalty term to the loss

function in Eq. (9):

∥θE − θinit
E ∥F , (10)

2



where θE denotes current word embedding parameters and

∥ · ∥F is the Frobenius norm. This retrofitting term tries

to keep the word vectors close to the original vectors, while

minimizing the loss function on word ordering (Eq. (9)).

3. Related Work

Learning distributed word representations has a long his-

tory in natural language processing. Latent semantic anal-

ysis (LSA) [Deerwester 90] performs a singular value de-

composition (SVD) to co-occurrence matrices of “term-

term” type, which produces a low-dimensional vector for

each word. [Bengio 03] introduced a Neural Network Lan-

guage Model (NNLM) where word vectors are simultane-

ously learned along with a language model. More recently,

[Mikolov 13a, Mikolov 13b] proposed two log-bilinear mod-

els: the Skip-Gram model (SG) and the Continuous Bag-

Of-Words model (CBOW). These models are formalized as

a one-layer structure based on the inner product between

two word vectors.

The main drawback of these methods except for the

NNLM is that they do not model word order explicitly. In-

formation about word order, however, is an indispensable

resource for learning syntactic representations of words.

The vectors learned by these models are thus suboptimal

for syntax-related tasks such as part-of-speech tagging or

dependency parsing [Andreas 14]. Although the NNLM uti-

lizes word order, the NNLM is very slow to train unfortu-

nately. This is a consequence of having to predict the prob-

ability distribution over entire vocabulary, which is avoided

in our method.

Most recently, [Ling 15b] introduced two extensions of

the SG and CBOW: the Structured Skip-Gram model

(SSG) and the Continuous Window model (CWindow).

The core idea of the recent work of [Trask 15] is also the

same as the SSG and CWindow. Unlike the original SG and

CBOW of [Mikolov 13b], these models are aware of relative

positioning of contextual words and develop different con-

text embeddings. [Ling 15a] also proposed a method which

incorporates the CBOW with a soft attention mechanism

over contextual words.

The major difference of our method from the LM-based

approaches [Bengio 03, Mikolov 10] and the approaches

considering relative positions of contextual words [Ling 15b,

Trask 15, Ling 15a] is the model architecture and its objec-

tive where our word embeddings are optimized more ex-

plicitly for the word ordering task than those prior meth-

ods. We also modify the recently proposed pointer networks

(Ptr-Nets) [Vinyals 15] for applying it to word ordering task

efficiently.

4. Experiments

4.1 Setup
We used the English Wikipedia corpus for training the

proposed method and baseline models. We tokenized and

lowercased all tokens, then replaced all digits with 7. We

also appended special “⟨EOS⟩” symbols to the last of each

sentence. We built a vocabulary of the most frequent

Table 1: Test accuracy (%) of different word embeddings for

part-of-speech tagging on the Penn Treebank (PTB) corpus.

Method Accuracy (%)

SGNS 96.76

GloVe 96.31

SSG 96.94

CWindow 96.78

LSTM-LM 96.92

Our method (w/o ret.) 97.04

Our method 97.01

300,000 words, and then replaced out-of-vocabulary tokens

in the corpus with a special “⟨UNK⟩” symbol. The resulting

corpus contains about 80 million sentences with 1.2 billion

tokens. We randomly extracted 10, 000 sentences as the

validation set.

We used 300-dimensional vectors to represent words

throughout all experiments. The dimensionality of the hid-

den states in the LSTM was set to 512. We set the L2

regularization coefficient (called weight decay) to 4× 10−6.

We used mini-batch stochastic gradient descent to train our

model. The mini-batch size was set to 180. We computed

the loss function on the validation set every 20, 000 itera-

tions and utilized early stopping with patience 10 to avoid

overfitting. We built word vectors using the Skip-Gram

with Negative Sampling model (SGNS) of [Mikolov 13b] on

the pre-processed corpus and then used the vectors for ini-

tializing the word embeddings θinit
E in Eq. (10).

4.2 Part-of-Speech Tagging
Part-of-speech (POS) tagging is one of the major syntax-

related tasks in NLP. In POS tagging, every word in a sen-

tence is to be classified into its POS class. In this experi-

ment, we evaluated learned word representations by using

the vectors as features for supervised POS tagging. We

used the Wall Street Journal portion of the Penn Treebank

(PTB) corpus∗1 [Marcus 93]. We followed the standard

splits of sections 0-18 for training, 19-21 for development

and 22-24 for test sets. The dataset contains 45 tags. The

evaluation metric is the word-level accuracy.

In our experiments, three successive words are projected

to feature vectors using learned word embeddings, which are

concatenated and fed to a 2-layer perceptron that predicts

the POS class of the center word. We set the number of

hidden units to 300. We trained the classifier via stochastic

gradient descent without updating the word embeddings.

Table 1 shows the results of the different word represen-

tations on the test set of the PTB corpus. The results show

that our method yields better performance than the base-

lines. We also observe that the methods considering word

order (SSG, LSTM-LM and our method) tend to outper-

form the methods without considering word order (SGNS

and GloVe). The result supports our hypothesis that word

order is crucial for learning syntactic representations. In

∗1 We use the LDC99T42 Treebank release 3 version.

3



Table 2: Accuracy (%) of different word embeddings for the

word analogy task.

Method Total Accuracy (%)

SGNS 69.9

GloVe 68.3

SSG 69.7

CWindow 58.2

LSTM-LM 27.0

Our method 70.6

addition, our method without retrofitting slightly outper-

forms that with retrofitting. This result is intuitive as the

objective function of our method focuses on learning syntax

rather than distributional semantics.

4.3 Word Analogy
The word analogy task has been used in many previ-

ous works to evaluate the ability of word embeddings to

represent semantic and syntactic regularities. In this ex-

periment we used the word analogy dataset produced by

[Mikolov 13a]. The dataset consists of questions like “a is

to b what c is to ?”, denoted as “a : b :: c : ?”.

In this experiment we only report the scores of our

method with retrofitting because it consistently outper-

forms that without retrofitting. As can be seen in the Ta-

ble 2, our method yields the best performance. Although

we do not show here (due to the limited space), our method

also achieves the best scores on 4 out of 9 syntactic question

types, and 3 out of 5 semantic question types. Interestingly,

our method can outperform the SGNS, which is used to ini-

tialize our word embeddings. This result implies that word

order has a potential to improve not only syntactic but also

semantic word representations.

5. Conclusion

Most of works on learning distributed word representa-

tions focus on distributional semantics and ignore word or-

der, which is crucial for capturing syntactic information

about words. In this work, in order to obtain syntactically

plausible word representations, we presented an approach

based on pointer networks trained to solve the word order-

ing task. The experimental results demonstrate that our

method outperforms other baselines on POS tagging and

word analogy tasks.

References

[Andreas 14] Andreas, J. and Klein, D.: How much do word

embeddings encode about syntax?, in Proceedings of the

52nd Annual Meeting of the Association for Computa-

tional Linguistics (2014)

[Bengio 03] Bengio, Y., Ducharme, R., Vincent, P., and

Jauvin, C.: A neural probabilistic language model, Jour-

nal of Machine Learning Research, Vol. 3, No. Feb, pp.

1137–1155 (2003)

[Deerwester 90] Deerwester, S., Dumais, S. T., Fur-

nas, G. W., Landauer, T. K., and Harshman, R.: Index-

ing by latent semantic analysis, Journal of the American

Society for Information Science, Vol. 41, No. 6, p. 391

(1990)

[Faruqui 15] Faruqui, M., Dodge, J., Jauhar, S. K.,

Dyer, C., Hovy, E., and Smith, N. A.: Retrofitting word

vectors to semantic lexicons, in Proceedings of the 2015

Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language

Technologies (2015)

[Ling 15a] Ling, W., Chu-Cheng, L., Tsvetkov, Y., and

Amir, S.: Not all contexts are created equal: Better word

representations with variable attention, in Proceedings

of the 2015 Conference of Empirical Methods in Natu-

ral Language Processing (2015)

[Ling 15b] Ling, W., Dyer, C., Black, A., and Trancoso, I.:

Two/too simple adaptation of word2vec for syntax prob-

lems, in Proceedings of the 2015 Conference of the North

American Chapter of the Association for Computational

Linguistics: Human Language Technologies (2015)

[Marcus 93] Marcus, M. P., Marcinkiewicz, M. A., and San-

torini, B.: Building a large annotated corpus of English:

The Penn Treebank, Computational Linguistics, Vol. 19,

No. 2, pp. 313–330 (1993)

[Mikolov 10] Mikolov, T., Karafiát, M., Burget, L., Cer-

nockỳ, J., and Khudanpur, S.: Recurrent neural network

based language model, in Proceedings of INTERSPEECH

(2010)

[Mikolov 13a] Mikolov, T., Chen, K., Corrado, G. S., and

Dean, J.: Efficient estimation of word representations in

vector space, arXiv preprint arXiv:1301.3781 (2013)

[Mikolov 13b] Mikolov, T., Sutskever, I., Chen, K., Cor-

rado, G. S., and Dean, J.: Distributed representations

of words and phrases and their compositionality, in Ad-

vances in Neural Information Processing Systems (2013)

[Pennington 14] Pennington, J., Socher, R., and Man-

ning, C. D.: GloVe: Global vectors for word representa-

tions, in Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (2014)

[Trask 15] Trask, A., Gilmore, D., and Russell, M.: Mod-

eling Order in NeuralWord Embeddings at Scale, in Pro-

ceedings of The 32nd International Conference on Ma-

chine Learning (2015)

[Vinyals 15] Vinyals, O., Fortunato, M., and Jaitly, N.:

Pointer networks, in Advances in Neural Information

Processing Systems (2015)

4


