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The chief topic of discussion is the theory and practice of systematically robustifying learning algorithms such that
they realize provably stable performance over wide classes of data distributions. One concrete approach of interest
is to focus on the impact that highly reliable estimates of algorithm objective functions has on off-sample predictive
performance. We show that one may introduce nearly mechanical modifications to many popular algorithms which
results in a distinct robustness property. As well, the notion of “how much information to throw away” optimally
is introduced and basic results are given.

1. Background

In many statistical estimation tasks, a common paradigm

for designing reliable procedures is to use a combination

of heuristics and rigorous formal guarantees. The theoret-

ical results typically are very appealing, with the caveat

that they only hold under rather restrictive assumptions

on the underlying data distribution. Using such algorithms

in practice provides additional insight, and we build a pic-

ture of the conditions under which a given routine succeeds,

and where it tends to break down or become unstable in

its performance. Ideally, one would hope that formal and

empirical insights would align, such that even with highly

incomplete a priori information on the data, learning algo-

rithms perform “as we expect.”

Our talk focuses primarily on the theory and practice

surrounding the problem of how to systematically robus-

tify wide classes of learning algorithms. The present reality

is that many popular routines in common use are in fact

very sensitive to contaminated data or extreme observa-

tions when sample sizes are small. In pursuing algorithm

design such that our routines perform (with high probabil-

ity) as we expect them to, it is clear that the fundamen-

tal goal is a form of robustness. This important notion

has been present in the statistics literature since the 1960s

and there is a rich body of literature [Hampel et al., 1986,

Staudte and Sheather, 1990, Huber and Ronchetti, 2009].

In the machine learning community as well, recent

work such as strategic data sub-sampling techniques un-

der partial corruption [McWilliams et al., 2014], engineer-

ing objective functions resistant to extreme observations

[Candès et al., 2011], truncating the processed observations

[Audibert and Catoni, 2011], removing noisy or irrelevant

features through regularized objectives designed to suit the

underlying distribution [Soltanolkotabi et al., 2014], as well

as a prominent workshop at NIPS 2010 on “robust statisti-
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図 1: Schematic of basic robust target algorithm. The test

data is from a series of experiments using the linear model

with standard Normal inputs and log-Normal noise, and

comparing OLS with a robust alternative.

cal learning,” including talks from eminent researchers such

as Peter Bickel and Emmanuel Candès on the topic.

To raise more precise questions and make more substan-
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tial statements, let us formalize a concrete common ma-

chine learning task. Assume independent random obser-

vations z1, . . . , zn with common distribution Pz, of the

form z = (x, y) ∈ Rd+1. Denote the sample compactly

by z(n). In the regression task, we seek a correspondence

x 7→ f̂(x) with low prediction error off-sample, such that

f̂(x) ≈ y is a sharp approximation, with high confidence.

A learning algorithm is any procedure which returns f̂

given input z(n). To talk about performance, one may

introduce a loss L(f ; z) ≥ 0 to quantify predictive accu-

racy, say L(f ; z) ..= (f(x) − y)2. A natural benchmark is

L∗ = inf EL(f ; z), with the infimum is taken over f in

some algorithm-dependent model, or function class. There

are many routes of analysis, but put roughly, “good” per-

formance means that EL(f̂ ; z) − L∗ ≈ 0 is a very sharp

approximation for n not too large. When comparing rival

algorithms f̂ and f̂ ′, the key questions to ask are as follows:

1. For fixed Pz, which routine should perform best?

2. How sensitive is performance to assumptions on Pz?

In the remainder of this document we introduce outlining

some of the ideas underlying our work, making reference to

classical and modern results of import.

2. Robust procedures in the machine
learning era

Historically, the notion of creating a “robust” procedure

was, thanks to Hampel’s theorem, roughly a matter of de-

signing f̂ such that for any small ε > 0 one has a constant

δ where

∥P0 − P∥ < δ =⇒ ∥f̂(P0)− f̂(P )∥ < ε,

and this can be done for each P0 in some model P (a class

of distributions). This is just a continuity property for the

map of data distributions to the procedure’s final output,

here a function f̂ . This is a very useful notion when we have

some good, known, parametric model P = P(Θ) and want

to guard against small “corruptions,” or mixtures where

z ∼ Pz and Pz = (1 − η)P + ηQ for small η, P ∈ P(Θ),

and some disruptive distribution Q not too far from the

known class (cf. [Huber and Ronchetti, 2009]). Note the

key assumption:

A good a priori parametric model P(Θ) is available.

This setup is excellent in the context of 1970s statistics,

since estimation tasks were typically small in dimension,

sample sizes were assumed large (relative to dimension),

and carried out by professional statisticians. At present

we face different issues, since many users without formal

training are making use of machine learning algorithms for

high-dimensional statistical estimation tasks, which are ex-

pected to simply “work,” with little in the way of assump-

tion checking.

In this more modern setting, it might be more productive

to consider robustness in a different sense. For example,

we might say procedure A is more robust than procedure

B if at the same confidence level, the same performance

can be guaranteed under weaker assumptions on Pz. In

the regression task, this might amount to showing that for

small δ ∈ (0, 1) we have

EL(f̂ ; z)− L∗ < ε(n, δ)

with high probability, with the conditions on Pz being the

weaker the better, all else equal.

Given this context, we are interested in the theory and

practice of taking a given algorithm f̂ , and systematically

“robustifying” it by modifying key sub-routines in a me-

thodical way such that near-optimal performance is guar-

anteed for a provably larger class of data distributions. One

natural idea is to take algorithms utilizing sample loss op-

timizers, namely those f̂ = argminf

∑n
i=1 L(f ; zi)/n, and

re-code them to simply

f̂ = argmin
f∈F

L̃f ≈ EL(f ;z), Pz ∈ P

where P is some large, non-parametric class where the ap-

proximation quality satisfies some pre-specified threshold

(e.g., ε(n, δ) = O(1/
√

(n)) is about as good as it gets order-

wise). The basic idea is represented in Fig. 1. The task then

is how to construct the estimate L̃f given L(·; z), F , and

z(n), in such a way that the optimization can be imple-

mented and formal guarantees may be made. Defining an

M-estimator (with scaling parameter s) of the form

L̃f ∈

{
θ :

n∑
i=1

ψ

(
(L(f ; zi)− θ)

s

)
= 0

}

is a common starting point, where ψ is usually a smooth

function on R, and may be monotonic or re-descending in

the limit. A fascinating result [Catoni, 2012] says that if

we have access to σ2
f

..= varL(f ; z), then there exists a

(computable) class of increasing functions ψ such that

|L̃f −EL(f ; z)| ≤ O(σ
√

log(δ−1/n))

with probability no less than 1− 2δ. Of course assuming σ

to be known is artificial and restrictive, but doing so ren-

ders the scale estimation task trivial. As a result of this,

very recent work from [Brownlees et al., 2015] has shown

connections with this sort of re-coding and learning per-

formance. For example, they show that with known vari-

ance bound supf∈F varL(f ;z), and linear model F = {f :

f(x) = xTβ, β ∈ Rd}, an argument using key multiplier

inequalities [van der Vaart and Wellner, 1996] and chaining

techniques [Pollard, 1990] allows one to verify that the mini-

mizer of L̃f for the ℓ2 loss L is such that EL(f̂ ; z)−L∗ scales

with O(
√

log(δ−1)/n) plus a term scaling with a metric en-

tropy model complexity parameter [Dudley, 1967]. The key

fact is that as long as Pz is such that the uniform bound is

finite, the results hold, making for a significant weakening

of assumptions on the noise distribution.

One then naturally asks, outside this idealized setting,

how should we estimate s? This essentially as “how much
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information to truncate” in a routine that adapts to Pz.

Clearly some tradeoffs must be made; today we look at what

sort of a price must be paid, discuss some basic results and

routines for tackling the more general problem.
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