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Sharing unused vehicles is one practical solution for traffic congestion. We propose an advanced vehicle-sharing
service that maximizes the sharing of vehicles and improves traffic efficiency by coordinating user trips via an
information system. We formulate ride-sharing games that model externalities in vehicle sharing caused by
insufficient vehicle supply. We show how Bayes correlated equilibrium can coordinate players in ride-sharing
games and verify the resultant improvement in the price of anarchy.

1. Introduction

Game theory seeks to solve the traditional problems of

congestion and effective resource allocation. As populations

increasingly concentrate in big cities, congestion becomes

an increasingly critical problem. One practical solution

for congestion is sharing unused or idled resources. For

example, many vehicles inching along heavily congested

roads have empty seats, or they occupy increasingly

scarce urban parking spaces while pedestrians struggle

to hail available taxis. There are many examples of

fallow resources, including unoccupied buildings, empty

restaurants, and unemployed workers.

We propose an advanced vehicle-sharing service that

combines car sharing and ride sharing. People share

their personal vehicles, and every user can be a driver or

passenger of a shared vehicle instead of its owner. Their

trips are coordinated by a mediator system to maximize the

use of shared vehicles and improve transportation efficiency.

Considering the negative externalities caused by

insufficient vehicle supply is the presiding difference

between studies that examine vehicle sharing and those

that examine traffic routing. While players drive their

own vehicles in the traditional traffic-routing problem,

players must locate vehicles to share before riding them

in the vehicle-sharing problem. In the latter problem,

players who change routes alter vehicle availability and

impose externalities on other players—even those who are

not transiting common routes. For example, consider a

sequence in which Player 1 first drives a vehicle from A

to B, next Player 2 drives that vehicle from B to C, and

then Player 3 drives it from C to D. If Player 1 does not

complete his/her route, Player 2 and Player 3 cannot use

the vehicle even though Player 3 shares no part of his/her

route with Player 1.

The congestion game introduced by Rosenthal[1] has

been applied to analyzing traffic congestion externalities[2].

Traffic engineers know that selfish route choice behavior

diminishes the efficiency of transportation. Several studies

employ congestion games to examine how traffic can be
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controlled by coordinating the behaviors of selfish drivers[3].

Others examine the loss in welfare created by selfish traffic.

In other words, they compare the costs generated by selfish

traffic to costs under optimally controlled traffic and refer

to the difference as the price of anarchy (PoA)[4]. It seems

that selfishness also reduces the efficiency of vehicle sharing.

However, congestion games involve only externalities among

players choosing partially identical routes; they are not

useful in analyzing the externalities in vehicle sharing

caused by inadequate vehicle supply. Agatz[5] reviews

studies of vehicle sharing and notes that they do not analyze

PoA.

Hara et al.[6] apply mechanism design theory to the

coordination of selfish users in vehicle sharing. However, the

mechanism imposes complex computations of trip values

and unlimited budgets on users, and it presents practical

difficulties in implementation.

Signaling is another relatively new approach to

coordination. A mediator provides players information

to control their beliefs concerning uncertain environments

when information asymmetry exists between the mediator

and players[7, 8, 9]. Accordingly, the mediator can control

the expected payoff and the resulting choices of players.

Signaling is easily implemented via a mobile phone app that

provides information to users. Although several studies

apply signaling to transportation problems[10, 11], they

focus on traffic routing, not vehicle sharing.

This study involves coordinating selfish users of shared

vehicles via signaling. It analyzes improvements in PoA

in a manner similar to the analysis of traffic routing in

congestion games.

2. The Models

2.1 Ride-sharing games
This section prepares an analytical tool for vehicle

sharing similar to congestion games for traffic-routing

analysis. We formulate ride-sharing games that model

positive and negative externalities arising from vehicle

supply.

A ride-sharing game is defined as a tuple G =<

N ,M, T ,G,A, µ, c >. N = {1, . . . , N} is a finite set of

players. A player i ∈ N represents a user of shared vehicles.

−i represents all players except i. M = {1, . . . ,M} is a
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finite set of vehicles. Each vehicle m ∈ M has a common

seating capacity w ∈ N>0.

G =< V, E > is a directed graph featuring finite sets of

nodes V = {1, . . . , V } and edges E = {1, . . . , E}. G is a

simple graph, but each node has a loop to itself. A node

v ∈ V represents a place, and an edge e ∈ E represents a

road. Players and vehicles move on G.
T = {1, . . . , T} is a finite set of time that partitions the

day. Each player and vehicle is located on a node at time

t ∈ T and finishes a move on an edge during period (t, t+1).

R is a set of all paths with length T −1 on G. A path r =

(v1, v2, . . . , vT ) ∈ R represents a player’s roundtrip during

a day. Ai ⊂ R is a set of strategies of player i. A = ×
i∈N

Ai

is a set of strategy profiles. ai ∈ Ai is a roundtrip of player

i, and a ∈ A is a strategy profile. a−i represents a strategy

profile of all players except i.

µ(i, t,a) :< N , T ,A >→ M is a map that represents

the allocation of player i to vehicle m during each period

(t, t + 1) depending on strategy profile a. If no vehicle is

allocated to player i, µ(i, t,a) = ∅. Each vehicle m moves

together with allocated player i on the same edge where

the player moves. sm(t,a) represents the number of players

riding in vehicle m during period (t, t+1) when the strategy

profile is a.

ce(w, sm) :< N>0,N≥0 >→ R≥0 is a cost function of a

player riding in vehicle m on edge e. c = {ce|e ∈ E} is a set

of cost functions of all edges. The total cost of player i in

a day is ci(a) =
∑

et∈ai
ce(w, sµ(i,t,a)(t,a)).

We consider one-shot games wherein players

simultaneously choose entire roundtrips a during one

day. We assume that the cost function ce is monotonically

decreasing for sm when sm < w and monotonically

increasing when sm ≥ w. We also assume µ so that users

choose to ride vehicles selfishly to reduce their costs. An

allocation mechanism is needed if the demand for vehicles

exceeds supply on a node or edge, but that issue lies

outside our scope of study.

2.2 Bayesian ride-sharing games
Here we consider cases wherein players have incomplete

information regarding vehicle allocation. A Bayesian

ride-sharing game is an extension of a ride-sharing game

and is defined as Gb =< N ,M, T ,G,A,X ,P, µ, c >.

X is a set of possible values of an exogenous variable

x ∈ X , which affects the allocation of vehicles µ. µ(i, t,a|x)
is the allocation of vehicles depending on x. Similarly,

sm(t,a|x) is the number of players riding on vehicle m

depending on x, and ci(a|x) is the cost to player i depending
on x. pi(x) : X → [0, 1] is a probability distribution of X for

player i, which represents his/her belief. P = {pi|i ∈ N}
is a set of probability distributions of all players. The

definitions of other elements of Gb are the same as those

in ride-sharing game G.

Examples of the exogenous variable x are initial vehicle

locations and demand information aggregated through the

Internet. Each player chooses ai to minimize his/her

expected cost, which is EX [ci] =
∑

x∈X ci(a|x)pi(x). If

all players behave selfishly, the resulting strategy profile is

a Bayesian Nash Equilibrium (BNE).

2.3 Signaling in Bayesian ride-sharing games
We use Bayes Correlated Equilibrium (BCE)[8] as a

signaling technique used by a mediator to coordinate

selfish players and improve the efficiency of vehicle sharing.

BCE is a conditional distribution σ(â|x) of a random

recommendation â that gives players an incentive to follow.

Given the cost function cs(a|x), the mediator’s problem

is to design an optimal recommendation that motivates

players to coordinate to minimize the mediator’s cost. The

problem is expressed as follows:

maxσ Ex[cs(â|x)]
s.t.

∑
â−i,x

pi(x)σ(â|x)ci(âi, â−i|x) ≤∑
â−i,x

pi(x)σ(â|x)ci(ai, â−i|x), ∀i∀âi.

(1)

The constraint represented above is called incentive

compatibility (IC), and it renders every player unable

to reduce his/her cost by deviating from the action

recommended by the mediator.

3. Examples

Here, we show how signaling can improve the efficiency

of sharing by incentivizing players to coordinate with each

other in a Bayesian ride-sharing game. Game Gb is defined

as follows:

• N = 2, V = 3, T = 4,M ≤ 1.

• G and initial locations are shown in Figure 1. All nodes

have loop edges to themselves.

• ai must include node 3 for all players.

• A player uses the vehicle if it is located on his node.

• There is uncertainty x ∈ X = {0, 1} regarding the

availability of the vehicle. x = 0 means M = 0 and

x = 1 means M = 1.

• All players have a common prior pi(x = 0) = 0.5,∀i.

Each player has only two distinct options such that A =

{C,D}. C = (1, 2, 3, 1) is a trip that visits nodes in this

order. On the other hand, D = (1, 1, 3, 1). All edges except

for loop edges have the same cost function. If a player does

not use the vehicle, the cost is 8. If a player drives alone,

the cost is 6. If two players share the vehicle, the cost is

1. The cost at loop edges is 0. Cost matrices of this game

appear in Tables 1 and 2.

The expected cost matrix is shown in Table 3. It has

the structure of a prisoner’s dilemma because each player

prefers to go to node 3 without picking up the car and return

home riding with another player rather than risk picking up

the car in person. Accordingly, BNE is a = (D,D), which

means that no players share the vehicle.

Now we consider a system that uses BCE to coordinate

players to share the unused vehicle. The system cost can

be denoted as cs(a|x) =
∑

i∈N ci(a|x). The problem of

the system is denoted by Eq.1, which is the search for
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Figure 1: A Bayesian ride-sharing game

Table 1: ci(a1, a2|x = 0)

C D

C 20,20 20,16

D 16,20 16,16

Table 2: ci(a1, a2|x = 1)

C D

C 10,10 15,9

D 9,15 16,16

Table 3: Ex[ci(a1, a2|x)]
C D

C 15,15 17.5,12.5

D 12.5,17.5 16,16

Table 4: σ(â1, â2|x)
σ(â1, â2|0) σ(â1, â2|1)
C D C D

C α0 β0 C α1 β1

D β0 1− α0 − 2β0 D β1 1− α1 − 2β1

Table 5: Optimal σ(â1, â2|x)
σ(â1, â2|0) σ(â1, â2|1)

C D C D

C 0 0 C 0.06 0.47

D 0 1 D 0.47 0

an optimal recommendation policy σ(â|x) as in Table 4.

The problem becomes one of linear programming, and

Table 5 presents a solution. This incentive-compatible

recommendation induces the coordination of players

and realizes BCE, where the system’s expected cost

Ex[cs(â, x)] = 27.9, which is better than the one under

BNE, Ex[cs(a|x)] = 32. Since Ex[cs(a|x)] = 26 in social

optimum, the PoA is improved from 1.23 under BNE to

1.07 under BCE.

4. Conclusion

We have formulated ride-sharing games that model

externalities caused by insufficient vehicle supply. We

verified the coordination of selfish users by BCE and

improvements in PoA on the basis of a simple ride-sharing

game. Future studies should determine the theoretical

bounds of PoA and propose an approximate algorithm for

general games followed by practical verification.
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