質感画像の弱教師領域分割と 214-0S-07a-2 その結果に基づく質感の部分的変換

Partial style transfer for texture image using weakly supervised segmentation

下田 和*1 Wataru Shimoda 松尾 真*² Shin Matsuo 柳井 啓司*3 Keiji Yanai

*1 *2 *3電気通信大学大学院 情報理工学研究科 Department of Informatics, The University of Electro-Communications

A style transfer technique based on Convolutional Neural Network (CNN) can change appearance of an image naturally while keeping its structure. However, this algorithm changes not a style of part of an image but a style of an entire image. In this paper, we propose a partial texture style transfer method by combining a style transfer method with segmentation. We segment target object regions using weakly supervised annotation and transfer a given texture style to only the segmented regions. As results, we achieved partial style transfer for only specific object regions.

1. はじめに

2015 年, Gatys ら [1] によって大規模な 画像データセットで事前に学習された Deep Neural Network を用いることで画像のス タイルを変換するアルゴリズムが考案され た。[1] の手法は細かいパラメータを設定 せずに,物体の形状を精密に維持して画像 のスタイルを変更することができる。

本研究ではこのアルゴリズムを,素材画 像のデータセットとして広く知られている Flickr Material Database(FMD)[2]の画 像について適用し,画像内物体の質感の変 換を行う。ただし,スタイルの変換は画像 全体に対して行うために,背景の質感も変 化してしまう。そこで,本研究では,領域 分割により質感領域を推定することで,質 感領域のみに対してスタイルの変換を行っ た。また,質感の変換された画像につい て,再度領域分割を行い,結果の変化を確 認した。

画像の質感の変換が可能となれば,画像 に対する心象を意図的に変化させることが でき,デザイン業界など様々な分野での応 用が期待できる。

2. 手法

本手法は,主に画像のスタイル変換,領 域分割の二つの手法を組み合わせている。 まず,[1]の手法により画像全体のスタイ ル(質感)を変換する。その後,領域分割 により対象の物体領域を推定することで, 対象物体の領域のみの画像合成による変換 結果を変換する。また,質感を変換した画 像について,再度領域分割を行い,領域分 割結果の変化を確認した。図1に本研究の 概要を示した。

2.1 画像のスタイル変換

Gatys ら [1] の手法を用いて画像を 合成することで、画像のスタイルの変 換を行う。変換させる画像をコンテン ツ画像 x_c ,スタイル画像を x_s ,合成結 果画像を x_g とする。 x_c,x_s,x_g のコン テンツ表現とスタイル表現を CNN の 特定の layer の活性値から求め、 x_g の コンテンツ表現が x_c に,スタイル表現 が x_s に近くなるように反復的に合成す る。使用した CNN は VGG19[3] であ り、コンテンツ表現に使用する layer は conv4_2, スタイル表現に使用する layer は

図 1: 実験の流れ

conv1_1,conv2_1,conv3_1,conv4_1,conv5_1 である。図 2 は VGG19 からコンテンツ 表現とスタイル表現を抽出するレイヤー の略図である。

図 2: コンテンツ表現とスタイル表現の抽 出レイヤーについての概要

layer *l* におけるコンテンツ表現はパラ メータ数 N_l の活性値行列 F(x, l), その誤 差関数は x_c と x_g の差であり、式 1 で表 される。

$$L_{c}(x_{c}, x_{g}) = \frac{1}{2} \sum_{i,j} \left(F_{i,j}(x_{c}, l) - F_{i,j}(x_{g}, l) \right)^{2} \quad (1)$$

layer *l* におけるスタイル表現は活性値 行列の式 2 で表される相関行列 G(x, l), そ の誤差関数は $x_s \ge x_g$ の差であり、式 3 で 表される。使用する layer 全体の誤差は重 み w_l を用いて式 4 で表される。

$$G(x,l) = F(x,l)F^{T}(x,l)$$
(2)

$$L_{s,l}(x_s, x_g, l) = \frac{1}{4N_l^2} \sum_{i,j} \left(G_{i,j}(x_s, l) - G_{i,j}(x_g, l) \right)^2$$

$$L_s(x_s, x_g) = \sum_l w_l L_{s,l} \tag{4}$$

全体の誤差関数は重み *w_c*, *w_s* を用いて 式 5 で表される。この式の値が最小となる ように *x_g* を最適化する。

$$L(x_c, x_s, x_g) = w_c L_c(x_c, x_g) + w_s L_s(x_s, x_g)$$
 (5)

2.2 弱教師あり領域分割

Simonyan ら [4] の手法を基にしてサリ エンシーマップを生成し, CRF[5] を適用 することで, 弱教師あり学習による領域分 割を行う。図 3 に, 領域分割の概要を示 した。

図 3: 領域分割手法の概要

2.2.1 CNN の学習

[6] はグローバルマックスプーリングを 行うことで、バウンディングボックスのよ うな詳細なアノテーションを必要とせずに、 高い精度でクラス分類を行った。本研究で は、[6] の手法を、VGG16 [4] モデルに適 応させた。

2.2.2 サリエンシーマップ

[7] は CNN における学習アルゴリズム に着目し, Back propagation により得ら れる伝搬値が,物体の大まかな位置を反映 していることを示した。本研究は, [7] の手 法を以下の点について改良し,カテゴリご とに,物体の位置を表すサリエンシーマッ プを生成した。その物体の位置を表すサリ エンシーマップを生成した。(1)[7] におい ては,画像レベルの伝搬値のみを用いて位 置の推定を行ったが,本研究では中間層の 伝搬値を用いることでより高い精度で位

図 4: 左 (入力画像),中 (simonayn et al.),右 (Ours)

置の推定を行った。(2) 各カテゴリごとの 信号から得られる伝搬値の差分をとること で,カテゴリに顕著なサリエンシーマップ を生成した。(3) 複数のサイズの入力画像 から得られる伝搬値を統合した。(4) Relu の際に, Guided back propagation[8] を 採用した。図 4 は一般画像における,本 手法と [7] の比較である。より鮮明なサリ エンシーマップが生成できていることがわ かる。

2.2.3 Dense CRF

CRF はラベルの拡張手法であり, low level featre を用いて, 粗い領域分割結果 から,スムースな領域を得るために用い ることができる。本研究ではサリエンシー マップを種として, Dense CRF[5] を適用 し,領域分割結果を改善した。[5] におけ るエネルギー関数は以下の式に従う。

$$E(c) = \sum_{i} \theta_i(c_i) + \sum_{ij} \theta_{ij}(c_i, c_j) \quad (6)$$

単項は、 $\theta_i(c_i) = -\log(\tanh(\alpha \cdot \mathbf{M}_i^c))$ とした。cはピクセルに割り当てられたラベルである。

本研究では *target* クラス+背景クラス のラベルの領域拡張を行った。*target* は, 閾値で決定し,背景クラスの probability は以下の式から求めた。

$$\mathbf{M}^{b}g = 1 - \max_{c \in \text{target}} M_{x,y}^{c} \tag{7}$$

平滑化項は [5] に従った。図 5 に質感画像 における領域分割結果の例を示す。

3. 実験

Flickr Material Database [2] は 10 種 類 (fabric, foliage, glass, leather, metal, paper, plastic, stone, water, wood) の

図 5: 質感画像の領域分割結果とカテゴリ ごとのサリエンシーマップ

素材画像,各 100 枚,合計 1000 枚からな るデータセットである。本研究は [2] から 数枚の画像を用いて実験を行った。

実験は図1のように、画像全体のスタイ ル変換、コンテンツ画像の領域分割、変換 領域の抽出(変換)、質感の変換結果につ いての領域分割を行った。図6に、2種類 のコンテンツ画像について、10種類のス タイル画像を用意し、合計20組の画像に ついての実験結果を示した。

多くの場合で、コンテンツ画像の物体の 形状を精密に維持したまま、質感の変換を 行うことが出来ているのが見て取れる。ま た、領域分割の結果を取り入れることで、 より自然な質感の変換を実現することが 出来た。また,表1に図6における質感 領域の質感変換画像の領域分割結果を示 した。質感の変換結果を再度領域分割する ことで, fabric, foliage, stone, water では 高い精度でスタイルの領域を推定すること が出来た。これらは、肉眼で確認しても比 較的よい結果であり,よい変換を行うこと が出来ていると言えるのではないかと考え ることが出来る。ただし, glass, metal で は低い領域分割結果の精度となった。これ は、glass や metal の質感が大きく光沢に 依存していることが原因として考えられ る。glass や metal の質感は外部の環境と 強い関係があるために, 質感の学習, 認識 が難しかった可能性がある。今回は2種類 のコンテンツ画像について、10種類の素 材について質感の変換を行ったが、再領域 分割結果の精度は、素材ごとに共通してい ることが見て取れる。これは、質感の変換 が容易な素材と、難しい素材があることを 示しているためであると考えられる。

図 6: スタイル変換実験の結果。画像の上 に付与された番号は実験の段階に対応して いる。領域の色は素材のラベルの左側の色 に対応している。

まとめ 4.

画像のスタイルを変換するアルゴリズム を, 弱教師有領域分割を用いて画像に部分 的に適用することで画像内物体の質感を変 換した。使用した質感画像は FMD の 10 種類の素材画像であり, 2 種類のコンテン ツ画像について、質感の変換を行った。そ の結果、多くの例で違和感のない質感変換 を行うことができた。しかし、その変換後 の画像の領域分割結果は素材によりばらつ きが見られた。目的に合ったよいスタイル 画像の自動選択.スタイル変換アルゴリズ ムの改良,領域分割の精度向上を今後の課 題としたい。

参考文献

[1] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm of artistic style. In arXiv:1508.06576, 2015.

				N/B
class	pixel	$\max_{\mathbf{H}}$	pixel acc	$\max_{\mathbf{H}}$
		10		0.00
fabric	0.83	0.72	0.96	0.93
foliage	0.85	0.77	0.99	0.96
glass	0.41	0.53	0.36	0.56
leather	0.24	0.33	0.27	0.52
metal	0.44	0.52	0.44	0.60
paper	0.77	0.79	0.64	0.74
plastic	0.60	0.60	0.54	0.67
stone	0.87	0.79	0.95	0.93
water	0.77	0.74	0.69	0.78
wood	0.59	0.51	0.89	0.82

表 1: 図 6 における質感領域の質感変換画 像の領域分割結果の精度比較

- [2] C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz. Exploring features in a bayesian framework for material recognition. In Proc. of IEEE Computer Vision and Pattern Recognition, 2010.
- [3] K. Simonyan and A. Zisserman. Verv deep convolutional networks for largescale image recognition. In Proc. of arXiv:1409.1556, 2014.
- [4] K. Simonyan, A. Vedaldi, and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations, 2015.
- [5] P. Krahenbuhl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. In Advances in Neural Information Processing Systems, 2011.
- [6] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free? -weakly-supervised learning with convolutional neural networks. In Proc. of IEEE Computer Vision and Pattern Recognition, 2015.
- [7] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In International Conference on Learning Representations, 2014.
- [8] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all convolutional net. In International Conference on Learning Representations, 2015.