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Adequate planning is essential for intelligent robots to achieve complex task collaboration with other agents. To
fulfill this adequate planning, three levels of adaptability including motion modification, action selection, and turn
taking are important. We developed a hierarchically organized neuro-dynamical system that can achieve these
different levels of adaptability by utilizing the multiple timescale property. The proposed system was implemented
in a humanoid robot that was required to collaborate with a human partner. In both learned and unlearned
situations, the robot was able to generate adequate behavior through different levels of adaptability. Experimental
results demonstrate that these different levels of adaptability can be realized by a single system.

1. Introduction

Intelligent robots are expected to collaborate with human

partners for achieving tasks with spatiotemporal complex-

ity which can be dealt well by sharing roles among them.

For this purpose, adequate planning is essential for these

robots. We consider that adequate planning in the context

of human-robot collaboration can be realized by the fol-

lowing three levels of adaptability: (1) motion modification

[Khansari & Billard, 2011], (2) action selection [Hawkins

et al., 2013], and (3) turn-taking [Awano et al., 2010]. Al-

though these different levels of adaptability must be well-

integrated, most past studies have focused on a particular

aspect of these levels instead of considering the integration.

In this study, we consider to apply a hierarchically or-

ganized neuro-dynamical system called multiple timescale

recurrent neural network (MTRNN) [Yamashita & Tani,

2008] as a computational framework for achieving the mul-

tilevel adaptability. MTRNNs are well-known for the ability

to self-organize functional hierarchy by utilizing their mul-

tiple timescale property. We speculate that this ability can

contribute to the acquisition of the multilevel adaptability.

An MTRNN was implemented in a humanoid robot and the

robot was required to collaborate with a human partner in

a bell hitting task. Results demonstrate that the multilevel

adaptability can be acquired by the single system.

2. Model

MTRNNs consist of two groups of context layers accord-

ing to their timescale (Figure.1(a)). One is the fast context

layer (or lower level) representing action primitives and the

other is the slow context layer (or higher level) represent-

ing the sequence of the primitives. In the present study, an

MTRNN is adopted for learning to generate sensory pre-

dictions, by considering its ability to deal with sequential
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tasks. In addition, a static vector called parametric bias

(PB) is utilized as the highest-level representation to keep

task sequences. It should be noted that the same task under

the different environmental situations is represented by the

same PB. By combining both PB information representing

a task sequence and sensory inputs representing the current

environmental situation, the system can achieve adequate

planning.

There are two information pathways in the system. One

is the top-down pathway starting from the highest-level rep-

resentation of PB and finally ending at the lowest-level sen-

sory predictions through the slow and fast context layers.

The result of sensory (proprioceptive) predictions is sent to

a robot as a target state to generate actions. The other is

the bottom-up pathway starting from sensory inputs to the

slow context layer through the fast context layer.
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Figure 1: Structure of system.

3. Experimental Setup

A collaborative bell hitting task between a human and

a humanoid robot NAO (Figure.1(a)) is considered. Two

bells with different colors (red and blue) and a green glove
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for human’s hand are used in experiments. On each agent’s

side, one bell is located. Two kinds of collaborative task

sequences are given. One of the sequences is repeating

BBBR (B: hit blue bell, R: hit red bell), and the other is

repeating RRRB. On the robot’s side, bell positions include

three fixed positions around each hand of the robot (Fig-

ure.1(b)). On the human’s side, one bell position is fixed

in front of him/her. In the experiments, with a shared task

sequences between the human and the robot, the aforemen-

tioned three different levels of adaptability were tested. For

(1) the motion modification, we set different situations by

slightly changing bell positions around one of the robot’s

hand. For (2) the action selection, we set different situa-

tions by changing bell positions between two of the robot’s

hands. For (3) the turn taking, we set different situations by

changing bell positions between the human and the robot.

The parameters we used for the MTRNN training were

as follows: number of fast context neurons NF = 100, time

constant of fast context neurons τF = 2, number of slow

context neurons NS = 10, time constant of slow context

neurons τS = 50, number of PBs NP = 2. Data for each

task with various bell positions were collected for training.

The MTRNN training was conducted in an offline man-

ner using all collected data. The testing for the multilevel

adaptability of the system was conduced by implementing

the trained MTRNN on the robot for collaborating with the

human in actual environment.

4. Results

Figure 2 shows the testing results of the robot’s vision

and action during the collaboration of BBBR task sequence

with a human. In the first case, the robot first hit the blue

bell on its right side three times and then the human hit the

red bell once. A third agent changed the bell positions from

1 to 2, and finally to an unlearned position 3 during action

generation. Receiving the changes of the blue bell position

of visual input in the bottom-up pathway, the prediction

of the robot’s arm joints was slightly changed through the

top-down process. From the first case to the second case,

the third agent changed the blue bell from the right to left

on the robot’s side. With PB in the highest level to keep

achieving BBBR sequences, the change of bell position in

visual input caused the change of the action selection of

robot through the top-down pathway. In time step around

650, the third agent switched the blue and red bells be-

tween the robot and the human. In this case, the robot

should wait for its own turn till the red bell should be hit.

The visual input changed by bell switching, especially the

information of collaborator’s action, made the turn taking

succeed through top-down pathway.

5. Conclusion

This study applied a hierarchically organized neuro-

dynamical system called MTRNN with PB units as a com-

putational framework for achieving human-robot collabo-

ration. Through the top-down and bottom-up pathways

of the system, the integration of different levels of adapt-
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Figure 2: Testing results of BBBR task collaboration.

ability including motion modification, action selection, and

turn taking was able to be acquired by the single system.

Currently, we used all the possible situations in the training

phase. For future work, we will consider using some of sit-

uations for learning, and the others for testing. We expect

that the system can also adapt to unlearned situations via

its generalization ability based on learned experience.
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