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Distributed Constraint Satisfaction Problem (DisCSP) and Distributed Constraint Optimization Problem
(DCOP) are fundamental frameworks to model many multi-agent problems. In those frameworks, a solution
is an assignment to a set of variables, each controlled by an agent, that either satisfies all constraints (DisCSP) or
maximizes the sum of rewards induced by the constraints (DCOP). In many real world situations, a new solution
is required whenever changes occur to the problem. However, a transition to a new solution induces an additional
cost and a perturbation between the previous and new solutions should be considered. In this paper, we propose
the Limited Perturbation Problem (LPP) where the goal is to find the best possible solution while limiting per-
turbations in a Dynamic DCOP. When limiting the number of variables that are allowed to change, we are able to
provide an interesting a priori guarantee on the solution quality.

1. Introduction

Distributed Constraint Satisfaction Problem [9]

(DisCSP) is a fundamental problem that can formalize var-

ious applications for multi-agent cooperation. In DisCSP,

agents assign values to variables, attempting to generate a

locally consistent assignment that is also consistent with

all the constraints between agents. Distributed Constraint

Optimization [3] (DCOP) is an extension of DisCSP where

constraints yield a real number (reward) instead of being

satisfied or unsatisfied. The goal of this problem is to find

an assignment that optimizes the sum of rewards over all

constraints.

Dynamic DisCSP can be represented as Minimal Pertur-

bation Problem (MPP) [1]. When changes occur, the pre-

vious solution becomes invalid and the goal of the MPP is

to find a new solution as close as possible to the previous

one. In this work, what is considered as perturbations is

the cost of changing the assignment.

Dynamic DCOP is usually represented using a sequence

of static DCOPs [8]. This representation considers each

problem to be independent and changing the assignment

of a variable is free. This is an ideal view of a dynamic

problem and it fails to take into account the perturbations

that are considered in the MPP. In a Minimal Perturbation

Problem, the initial case considered is a CSP with a solution

already in place. This CSP is then changed and the goal is

to find a new valid solution to the changed CSP that will

generate the least perturbations when adopted. For exam-

ple, a common application of this problem is the meeting

scheduling problem. When you have a certain schedule in

place, but some of the initial constraints are changed, it is

usually best to compute a new schedule as similar as the

initial one. Another work for Dynamic SAT (a problem

close to CSP) considered the decision change cost when all

the changes are known in advance [2]. The goal is then to

find the sequence of valid assignments that minimizes the

decision change costs. While decision change costs and per-
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turbations are not exactly the same thing, the goal in those

two works is to minimize a value induced when switching

between assignments.

In our work, we want to handle similar situations as the

MPP where we care about the cost of deviating from an

initial assignment. However, compared to DisCSP, the goal

of a DCOP is to optimize an objective function and all

assignments can be considered valid.

In this paper, we want to give a new definition of Dy-

namic DCOP where some perturbations have to be taken

into account. We consider that the previous definition of a

Dynamic DCOP is designed for a specific case where chang-

ing the assignment to the variables is free. When we need

to consider perturbations, we propose the Limited Pertur-

bation Problem (LPP) which requires a cost function and

a limit on how much of this cost is allowed. In the special

case where this cost function is the Hamming distance (the

number of changing variables), we are able to provide an

interesting a priori guarantee on the solution quality.

2. DCOP

A Distributed Constraint Optimization Problem (DCOP)

[3] is defined as a set of agents X, a set of variables V , a

set of domains D, a set of constraint relations C and a set

of reward functions F . Each agent is in control of one or

multiple variables. A variable vi ∈ V takes its value from

a finite, discrete domain Di ∈ D. A constraint relation

c ∈ C, c ⊂ V means that there exists a constraint between

all vi ∈ c. The reward function Rc(A) ∈ F represents the

reward generated by constraint c when variables take values

defined in assignment A. The quality of a value assignment

to all variables A is evaluated by summing the rewards of

all constraints: R(A) =
∑

c∈C,
Rc(a). Then, an optimal as-

signment A∗ is given as argmaxA R(A), meaning that A∗ is

an assignment that maximizes the sum of all reward func-

tions. A DCOP can be represented using a graph, called a

constraint graph [6], in which nodes represent variables and

edges represent constraints.
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v1 v2 reward v2 v3 reward v1 v3 reward

0 0 2 0 0 1 0 0 1

0 1 1 0 1 2 0 1 1

1 0 0 1 0 1 1 0 0

1 1 2 1 1 1 1 1 3

Figure 1: Example of Constraint Optimization Problem

Example 1 (DCOP) Consider the DCOP represented in

Figure 1 where 3 variables v1, v2 and v3 are linked by binary

constraints. Each variable can take the value 0 or 1 and the

resulting rewards are shown in the reward table. The opti-

mal solution of this problem is A = {(v1, 1), (v2, 1), (v3, 1)}

and the optimal value (i.e. sum of rewards obtained by A) is

6. This reward is computed by checking the reward of each

individual constraint: R{1,2}(1, 1) = 2, R{2,3}(1, 1) = 1 and

R{1,3}(1, 1) = 3. The resulting reward is R(A) = 2+1+3 =

6.

3. Dynamic DCOP

A Dynamic Constraint Optimization Problem (DynD-

COP) [8] can be represented as a sequence of static DCOPs.

This assumes that each problem is independent and that

reassigning variables is free. We call such representation a

Resource-Unbounded Dynamic DCOP (RU DynDCOP).

Definition 1 (Resource-Unbounded Dynamic DCOP)

A Resource-Unbounded Dynamic DCOP is a sequence

〈DCOP0, DCOP1, . . . , DCOPl〉 where the goal is to find

the optimal solution of each problem in the sequence.

In this work, we propose to tackle Cost-Sensitive Dy-

namic DCOP (CS DynDCOP) where adopting an assign-

ment has a cost that needs to be taken into account.

Definition 2 (Cost-Sensitive Dynamic DCOP)

A Cost-Sensitive Dynamic DCOP is a sequence

〈DCOP0, DCOP1, . . . , DCOPl〉 and a set of perturba-

tion functions ∆ = {δ0, δ1, . . . , δl} where a function δi

measures the cost of adopting an assignment for the

problem DCOPi.

The goal is to find a solution for each problem such that

it (i) maximizes the solution quality and (ii) minimizes the

perturbations induced, i.e., the cost of adopting the solution.

RU DynDCOP can be seen as a CS DynDCOP where

the sole focus is to maximize the solution quality. With

Definition 2, we can represent the cost of changing the as-

signment between two problems by having δi function of

both the solution of the previous problem DCOPi−1 and

the new assignment, allowing to model the cost of changing

from an assignment to another.

Existing DCOP and RU DynDCOP approaches cannot

be used to solve a CS DynDCOP as they completely ignore

the minimization of perturbations. One possibility is to

use a multi-objective approach [4], either to find all possi-

ble trade-offs between quality and perturbations, or to find

one solution corresponding to a preference between the two

objectives.

Because perturbations often represent real-life resources,

the approach we will propose in this paper is to limit the

amount of perturbations allowed.

4. Limited Perturbation Problem

In this paper, we work on DCOP and we do not assume

any hard constraint. We consider the dynamic case where

we solved an initial DCOP and adopted an initial assign-

ment. The problem was then modified and we now want to

find a new solution. If we consider the Minimal Perturba-

tion Problem for Dynamic DCOP, then we want a solution

as close as possible from the previous one. Since all assign-

ments are valid in a DCOP without hard-constraints, with

the priority of the Cost-Sensitive Dynamic DCOP being to

minimize perturbations, we will always keep the same as-

signment as before since it produces no perturbations. Do-

ing so completely ignores the optimization of the quality

and can lead to very bad solutions.

In this section, we introduce the Limited Perturbation

Problem (LPP) which can be used to solve a CS DynDCOP

by setting a limit on how much perturbations are allowed.

We then explain the relationship between solutions of the

LPP and k-size optimal solutions and show that we can

reuse guarantees designed for k-size optimal solutions for

the solutions of the LPP.

4.1 Definition

We now propose the Limited Perturbation Problem where

the goal is, given an initial assignment α and a maximum

allowed perturbations d, to find the best solution within this

limit. The amount of perturbations generated by adopting

a new assignment A is measured using the function δ(α,A).

Definition 3 (Limited Perturbation Problem) The

Limited Perturbation Problem (LPP) is defined as a tuple

Π = (Θ, α, δ, d),

where Θ is a Constraint Optimization Problem, α is an as-

signment for Θ that is called initial assignment, δ is a func-

tion that defines a distance between two assignments and

d is the maximum acceptable distance between two assign-

ments.

A solution to an LPP is an assignment A for Θ such

that (i) δ(α,A) ≤ d and (ii) there does not exist another

assignment A′ such that δ(α,A′) ≤ d and R(A′) > R(A).
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Example 2 (LPP) Let us consider the DCOP as in Ex-

ample 1 where A = {(v1, 1), (v2, 1), (v3, 1)} is the solution.

Now let us imagine the dynamic case where the constraint

between v1 and v3 was removed, generating Θ, the new

DCOP to solve.

We consider the resulting Limited Perturbation Problem

with initial assignment α = {(v1, 1), (v2, 1), (v3, 1)} and δ =

H, the Hamming distance.

We will now evaluate the solution of this LPP for different

values of d. The case where d = 0 is straightforward. Since

we allow no change from the initial assignment, the solution

of the LPP is α whose reward is now R(α) = 3.

For d = 1, we need only to consider, in addition to α,

assignments where one variable has a different value com-

pared to α: {(v1, 1), (v2, 1), (v3, 0)} yields a reward of 3,

{(v1, 1), (v2, 0), (v3, 1)} yields a reward of 2

and {(v1, 0), (v2, 1), (v3, 1)} yields a reward of 2.

Since R(α) = 3, the LPP can have two solutions for d = 1,

{(v1, 1), (v2, 1), (v3, 0)} or α.

Finally, let us consider d = 2, allowing two vari-

ables to change. The new assignments to consider

(in addition to α and the one we considered for

d = 1) are: {(v1, 1), (v2, 0), (v3, 0)} yields a reward

of 1, {(v1, 0), (v2, 1), (v3, 0)} yields a reward of 2 and

{(v1, 0), (v2, 0), (v3, 1)} yields a reward of 4. The best re-

ward over all the considered assignments is 4. The solution

of the LPP for d = 2 is thus {(v1, 0), (v2, 0), (v3, 1)}.

To find a solution for the problem DCOPi in a CS Dyn-

DCOP, we consider the LPP Πi = (DCOPi, α, δi, d) where

α is the assignment adopted for problem i−1 (or the initial

state of the system if i = 0).

Definition 4 (LPP-Based CS DynDCOP) An LPP-

Based Cost-Sensitive Dynamic DCOP is a sequence

〈Π0,Π1, . . . ,Πl〉,

such that for each Πi = (DCOPi, αi, δi, di), αi is solution

of the LPP Πi−1 for i > 0 or the initial state of the system

for i = 0.

Such representation is reactive as we only consider the

cost of change from one problem to the next.

4.2 Relationship With k-Size Optimality

k-size optimality [5] is a solution criterion for DCOP

which can provide the quality bound of a solution a pri-

ori, meaning the bound is obtained before we actually run

the algorithm. An assignment is k-size optimal if its reward

cannot be improved by changing the values of k or less of

its variables.

Definition 5 (k-Size Optimality) Considering

H(A,A′) the Hamming distance between two assign-

ments, an assignment A is classified as k-size optimal if

R(A) ≥ R(A′) for all A′ such that H(A,A′) ≤ k.

The value of k can vary between 0 (all solutions are 0-size

optimal) and |V |, the number of variables in the problem

(only an optimal solution of the problem is |V |-size opti-

mal). In the LPP, when we consider perturbations as the

Hamming distance between the two assignments (δ = H),

there exists some strong relationships between the solution

of a Limited Perturbation Problem and a k-size optimal

solution.

Property 1 A k-size optimal solution A of the problem Θ

is a solution of the LPP Π = (Θ, A,H, k).

We can also use the same guarantee for the Limited Per-

turbation Problem as for k-size optimality.

Proposition 1 For a Limited Perturbation Problem

Π = (Θ, α,H, d) where Θ is a DCOP with n variables and

a maximum constraint arity of m, we can express the fol-

lowing relation between the reward of the LPP solution A

and the reward of the optimal solution A∗ of Θ:

R(A) ≥

(

n−m

d−m

)

R(A∗)
(

n

d

)

−
(

n−m

d

) (1)

The proof for this proposition is very similar to the one

for k-size optimality in [5]. It is based upon the number

of constraints that can be optimized like in A∗. For the

LPP, we count those constraints based on the distance from

α whereas for k-size optimal solutions, it is based on the

distance from A. Due to space limitation, we omit the proof

here.

5. Experimental Evaluation

As an example application of the LPP, let us consider

the problem of forming a set of efficient teams from a set

of agents [7]. We have, for each pair of agents, a potential

synergy when they work together. The goal is then to assign

every agent to a team such that the global productivity is

maximized. We model this problem as a DCOP Θ where

agents are represented as variables that takes their values

from the set of possible teams. We find the solution α to Θ

and form our teams accordingly.

Next, the synergies inside a team change. and we up-

date our knowledge of the problem. We obtain a new

DCOP Θ′ for which the previous solution was α. The dif-

ferent teams being located in various locations around the

world, the travel expenses between those countries have to

be taken into account when reallocating the agents. We

represent this problem as a Limited Perturbation Problem

Π = (Θ′, α, δ, d) where δ gives us the costs of transferring

researchers and d is our maximum budget.

We generated a random initial problem Θ with a given

number of variables |V | = 15 (researchers) and a domain

size of three (corresponding to teams in Australia, France

and the USA). We consider a complete constraint graph and

rewards are randomly generated following a graph coloring

model. For the distance function δ, we use a cost of 500

to transfer a researcher between France and the USA and

between Australia and the USA. For a transfer between

Australia and France, we use a cost of 1000. If a researcher

does not change team, the resulting cost is 0.
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change intensity

LPP Complete

Time (s) / Quality

d = 0 d = 1000 d = 2000 d = 3000 d = 4000 d = 5000

0.25 0 305 0.07 324 1.36 340 11.7 349 55.7 356 165 361 665 367

0.5 0 301 0.07 330 1.39 345 11.9 354 56.6 361 167 366 662 374

0.75 0 295 0.07 326 1.51 344 13.2 353 62 361 180 367 664 373

1.0 0 299 0.07 338 1.31 357 11.1 370 52.7 379 157 382 665 383

Table 1: Results of using the LPP on a team formation problem.

The original problem is solved using a complete DCOP

algorithm and we consider α the solution of Θ. When we

modify Θ, we select a fixed percentage of all pair of vari-

ables sharing the same value in α (the researchers in a same

team). For each selected pair, we then generate a new re-

ward function.

Table 1 shows the average results over 20 instances where

each line corresponds to an intensity of change. For each

value of d and for the complete solving, we show the average

time taken to solve the problem with a naive brand and

bound algorithm and the corresponding quality. One of

the main observation we can make is that the more the

problem was changed, the bigger the impact of allowing

more budget. It thus seems that when a problem went

under very little changes, it might not be necessary to spend

numerous resources to change the previous solution. When

the problem underwent drastic changes however, it can be

very interesting to allow many changes to be made in order

to reach a much better solution.

6. Conclusion

Dynamic problems are a challenging topic concerning a

wide array of applications and often involving a cost for im-

plementing a new solution. In this paper, we proposed the

definition of a Cost-Sensitive Dynamic DCOP (CS Dyn-

DCOP) which allows to take this cost into consideration.

Greatly inspired by the Minimal Perturbation Problem

for CSP, we introduced the Limited Perturbation Problem

(LPP), a model that aims at limiting the perturbations in-

duced by changing the assignment in a CS DynDCOP. In

the LPP, we set a limit on that cost and aim at finding the

resulting best possible solution. We also use the LPP to

quickly find a new solution to a Resource-Unbounded Dy-

namic DCOP. By changing parts of the previously adopted

assignment, we can expect to easily find a new good so-

lution. Through the adjustable parameter d, we can then

obtain different trade-offs between quality and computation

time.

As future works, we want to use an approach to CS Dyn-

DCOP opposite of the LPP where we would give a limit on

the minimum quality allowed and then minimize the per-

turbations. We will also consider a proactive approach to

the Cost-Sensitive Dynamic DCOP. In a CS DynDCOP, the

choice of assignment for the current problem has an impact

on the next problem. With this in mind, we can prepare for

the next steps of the problem by adopting an assignment

that does not require many changes to be repaired.
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