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We consider the problem of belief propagation in a network of communicating agents, modeled in the recently
introduced Belief Revision Game (BRG) framework. In this setting, each agent expresses her belief through a
propositional formula and revises her own belief at each step by considering the beliefs of her acquaintances,
using belief change tools. We study the extent to which BRGs satisfy some monotonicity properties, i.e., whether
promoting some desired piece of belief to a given set of agents is actually always useful for making it accepted by
all of them. We show that some basic monotonicity properties are not satisfied by BRGs in general, even when the
agents merging-based revision policies are rational (in the AGM sense), but we identify a class where they hold.

1. Introduction

We are interested in the issue of monotonicity in a multi-
agent system, represented as a Belief Revision Game (BRG)
[9]. The BRG setting is a framework for modeling the be-
lief dynamics of a group of agents V , for instance agents
involved in a social network. A BRG is a dynamical sys-
tem where agents have their own belief bases (representing
their belief states), and communicate synchronously with
their acquaintances. The acquaintance relationship is given
through a binary relation A over V , i.e., (V,A) is a graph.
Let us introduce a motivating example:

Example 1. Consider a group of friends Alex, Beth and
Chris who are discussing on whether they should trust the
quality of the food served in a given restaurant. Alex and
Beth know each other, Alex and Chris as well, but Beth and
Chris do not know each other. Two meals are considered
by them. At the beginning, Alex believes that either the first
meal or the second one is healthy, but not both of them;
Beth believes that none of the two meals is healthy; whereas
Chris believes that at least one of the two meals is healthy.

At each communication step, each agent revises her be-
liefs by considering her acquaintances’ beliefs. Several
merging-based revision policies have been defined, each of
them reflecting how much an agent is ready to question her
current beliefs in front of her acquaintances’ beliefs. Then
a piece of belief ϕ is accepted by an agent i of V when there
exists a step of the game from which ϕ holds in the belief
bases of i at each subsequent step; and ϕ is unanimously
accepted when it is accepted by every agent of V .
Now, given a piece of belief ϕ, is adding “more ϕ” in a

BRG always beneficial to ϕ? More precisely, whenever a
piece of belief ϕ is unanimously accepted in a BRG, is it
always harmless to replace at the beginning some bases by
ϕ, or more generally, by a base that is “closer” to ϕ, i.e., by a
“promotion” of ϕ? This monotonicity condition is essential

when one wants to investigate the potential manipulation of
such sytems, in particular the control issue: consider a set
of agents from a predefined subset C of V and an additional
agent M who can “control” the agents from C, i.e., M can
modify the initial beliefs of agents from C, then is it possible
forM to make a piece of belief unanimously accepted? Such
a control issue is significant for a number of multi-agent
problems, including brand crisis management [2]; in such
applications, it is useful to know what information agents
from C should convey to their acquaintances in order to
avoid the propagation of negative perceptions.

2. Belief Revision Games

Let LP be a propositional language built up from a finite
set of propositional variables P and the usual connectives,
including ⊕, the xor connective. ⊥ (resp. ⊤) is the Boolean
constant always false (resp. true). Formulae are interpreted
in a standard way. Mod(ϕ) denotes the set of models of
the formula ϕ, |= denotes logical entailment and ≡ logical
equivalence, i.e., ϕ |= ψ iff Mod(ϕ) ⊆ Mod(ψ) and ϕ ≡ ψ

iff Mod(ϕ) = Mod(ψ). A belief base B denotes the set of
beliefs of an agent, it is a finite set of propositional formulae
interpreted conjunctively, so that B is identified with the
conjunction of its elements. A profile C = 〈B1, . . . , Bn〉 is a
finite vector of belief bases. A Belief Revision Game (BRG
for short) is formalized as follows [9]:

Definition 1 (Belief Revision Game). A Belief Revision
Game (BRG) is a tuple G = (V,A,LP ,B,R) where

• V = {1, . . . , n} is a finite set of agents;

• A ⊆ V ×V is an irreflexive binary relation on V which
represents the set of acquaintances between the agents;

• LP is a finite propositional language;

• B is a mapping from V to LP where for each i ∈ V ,
B(i) (noted Bi) is the initial belief base of agent i;
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• R = {R1, . . . , Rn}, where each Ri is the revision policy

of agent i, i.e., a mapping from LP × LP
in(i) to LP

with in(i) = |{j | (j, i) ∈ A}| the in-degree of i, such
that if in(i) = 0, then Ri is the identity function.

Let G = (V,A,LP ,B,R) be a BRG and let us denote Ci

the context of i, defined as the profile Ci = 〈Bi1 , . . . , Biin(i)
〉

where {i1, . . . , iin(i)} = {ij | (ij , i) ∈ A}. Then Ri(Bi, Ci) is
the belief base of agent i once revised by taking into account
her own current beliefs Bi and her current context Ci.
In a BRG, the beliefs of each agent evolve at each time

step using her revision policy. This induces for each i ∈ V

a belief sequence (Bs
i )s∈N where Bs

i denotes the belief base

of agent i after s steps, defined as B0
i = Bi and for each

s ≥ 0, Bs+1
i = Ri(B

s
i , C

s
i ),

∗1 where Cs
i is the context of i

at step s. In [9] we showed that in any BRG, the belief se-
quence of each agent i is cyclic, i.e., in (Bs

i )s∈N there exists

a finite subsequence Bb
i , . . . , B

e
i such that for every j > e,

we have Bj
j ≡ B

b+((j−b)mod(e−b+1))
i ; the belief cycle Cyc(i)

of an agent i corresponds to the series of this subsequence

of belief bases Cyc(i) = Bb
i , B

b+1
i , . . . , Be

i . As we are inter-
ested in determining the pieces of beliefs resulting from the
interaction of the agents, we focus on the outcome of each
agent i in G, denoted AccG(i) and defined as:

AccG(i) =
∨

{Bs
i | Bs

i ∈ Cyc(i)}.

We say that a formula ϕ is accepted by i in G if AccG(i) |= ϕ,
which means that ϕ is a logical consequence of every belief
base in the belief cycle of i. G converges at step s if for each

i ∈ V , Bs+1
i = Bs

i .
The formalization of a BRG allows each agent i to con-

sider any revision policy Ri ∈ R. However, one can take
advantage of theoretical tools from Belief Change Theory
(see e.g. [1]), more precisely, belief revision and merging
operators. A merging operator ∆ associates any formula
µ (the integrity constraint) and any profile C with a new
formula ∆µ(C) (the merged base). A merging operator ∆
aims at defining the merged base as the beliefs of a group
of agents represented by the profile, under some integrity
constraint. Standard properties (denoted (IC0)–(IC8))
are expected for merging operators, and such operators are
called IC merging operators (see [7] for more details).
IC merging operators include some distance-based opera-

tors, i.e., operators that are based on the selection of some
models of the integrity constraint, the “closest” ones to the
given profile. These operators are characterized by a dis-
tance d between interpretations and an aggregation func-
tion f [5]. They associate with every formula µ and every

profile C a belief base ∆d,f
µ (C) satisfying Mod(∆d,f

µ (C)) =

min(Mod(µ),≤d,f
C ), where≤d,f

C is the total preorder over in-

terpretations induced by C defined by ω ≤d,f
C ω′ if and only

if df (ω,C) ≤ df (ω′, C), where df (ω, C) = fB∈C{d(ω,B)}
and d(ω,B) = minω′|=B d(ω,ω

′). Usual distances are dD,

the drastic distance (dD(ω,ω′) = 0 if ω = ω′ and 1 oth-

erwise), and dH the Hamming distance (dH(ω,ω′) = n if

ω and ω′ differ on n variables). Using aggregation func-
tions such as Σ and GMax lead to IC merging operators.
For instance, GMax operators consider for each profile C

the total preorder over interpretations ≤d,GMax

C defined by

∗1 Abusing notations, a context Ci = 〈Bi1 , . . . , Biin(i)
〉 is here

identified with the sequence Bi1 , . . . , Biin(i)
.

steps s Bs
1 Bs

2 Bs
3

0 p1 ⊕ p2 ¬p1 ∧ ¬p2 p1 ∨ p2
2k + 1 ¬p1 ∨ ¬p2 p1 ⊕ p2 p1 ⊕ p2

2k + 2 p1 ⊕ p2 ¬p1 ∨ ¬p2 ¬p1 ∨ ¬p2

Table 1: The belief sequences of Alex, Beth and Chris.

ω ≤d,GMax

C ω′ if and only if dGMax(ω,C) ≤lex dGMax(ω′, C)

(where ≤lex is the lexicographic ordering induced by the

natural order) and dGMax(ω,C) is the vector of numbers
d1, . . . , dn obtained by sorting in a non-increasing order the
vector 〈d(ω,Bi) | Bi ∈ C〉. Lastly, belief revision operators
can be seen as belief merging operators applied to singleton
profiles: indeed, if ∆ is an IC merging operator then the re-
vision operator ◦∆ induced by ∆ defined for all bases B1, B2

as B1 ◦∆B2 = ∆B2(〈B1〉) satisfies the standard AGM revi-
sion postulates [1, 4].
Let us go back to BRGs. Six classes of revision policies

have been proposed in [9]. Each of them, denoted Rk
∆ (k ∈

{1, . . . , 6}) is parameterized by an IC merging operator ∆.

Each class is defined as follows,∗2 at each step s and for any
agent i such that Ci 6= ∅:

• R1
∆(Bs

i , C
s
i ) = ∆(Cs

i );

• R2
∆(Bs

i , C
s
i ) = ∆∆(Cs

i
)(〈B

s
i 〉) [= Bs

i ◦∆ ∆(Cs
i )];

• R3
∆(Bs

i , C
s
i ) = ∆(〈Bs

i , C
s
i 〉);

• R4
∆(Bs

i , C
s
i ) = ∆(〈Bs

i ,∆(Cs
i )〉);

• R5
∆(Bs

i , C
s
i ) = ∆Bs

i
(∆(Cs

i )) [= ∆(Cs
i ) ◦∆ Bs

i ];

• R6
∆(Bs

i , C
s
i ) = ∆Bs

i
(Cs

i ).

Example 1 (continued). We consider the BRG G∗ =
(V∗, A∗,LP∗

,B∗,R∗) defined as follows. V∗ = {1, 2, 3}
where 1 corresponds to Alex, 2 to Beth, and 3 to Chris.
A∗ = {(1, 2), (2, 1), (1, 3), (3, 1)} expresses that Alex knows
Beth and vice-versa, and Alex knows Chris and vice-versa,
but Beth and Chris are not connected. LP∗

is the propo-
sitional language defined from the variables P∗ = {p1, p2},
where p1 stands for “the first meal is healthy” and p2 means
“the second meal is healthy.” The initial beliefs of the
group members are B1 = p1 ⊕ p2, B2 = ¬p1 ∧ ¬p2 and
B3 = p1 ∨ p2. Assume that all agents use the same re-

vision policy, Ri = R1
∆dH,GMax for each i ∈ V∗. The be-

lief sequences associated with the three agents are given in
Table 1: the belief cycle of agent 1 (resp. 2, 3) is given

by (B0
1 , B

1
1) (resp. (B1

2 , B
2
2), (B

1
3 , B

2
3)). We have for each

i ∈ V∗, Cyc(i) = p1⊕p2,¬p1∨¬p2 and AccG(i) = ¬p1∨¬p2.

In [9] we studied the extent to which BRGs satisfy some
basic logical properties depending on the class of revision
policies used by the agents. We focused on the case where

all agents use the same revision policy ranging over Rk
∆,

k ∈ {1, . . . , 6}. It turned out that when the revision policy

is induced from the merging operator ∆dD ,Σ, i.e., the mer-
ging operator based on the drastic distance and the sum-
mation function, the underlying BRGs satisfy a number of
expected properties [9]. We also developed a software avail-
able online at http://www.cril.fr/ brg/ brg.jar, allowing one
to play BRGs with various revision policies.

∗2 When using a merging operator without integrity constraints
we just note ∆(C) instead of ∆⊤(C) for improving readibility.
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3. On the Notion of Promotion

Belief control in a multi-agent system can take various
forms, depending on the meaning given to “control.” Here,
we are specifically interested in control strategies that con-
sist in promoting a certain belief ϕ in the beliefs of the
agents. A key issue to be addressed is then to determine
what “promoting” precisely means in this context. A sim-
ple view is to consider that promoting ϕ in the belief base
B of an agent consists in replacing B by a base equiva-
lent to ϕ. While such a drastic way of promoting ϕ makes
sense, it is not the only one. Thus, for instance, revising
B by ϕ is another approach to do the job. Considering the
whole spectrum of promotion techniques is interesting be-
cause in some scenarios it could be the case that the agent
under consideration can be ready to promote ϕ by revising
her own beliefs B with it, while she would be reluctant in
questioning her whole base B and replacing it by ϕ. In
a bribery context, she could for instance ask much more
money to accept to change her base B to ϕ than to change
it to the revision of B by ϕ.
We now characterize the notion of “promotion” of ϕ

thanks to a preorder �ϕ over belief bases which intuitively

reflects the closeness relationship to ϕ; thus, B′ �ϕ B states

that B′ is at least as close to ϕ as B. On this ground,
promoting B consists in replacing B by any B′ satisfying
B′ �ϕ B, which roughly means that B′ and ϕ are closer to
each other than B and ϕ are:

Definition 2 (ϕ-promotion). For every formula ϕ ∈ LP ,
the ϕ-promotion relation is the binary relation �ϕ on LP ×
LP defined for all belief bases B,B′ as B′ �ϕ B if and only

if B ∧ ϕ |= B′ |= B ∨ ϕ.

Obviously, one can check that for any ϕ ∈ LP , the binary
relation �ϕ is reflexive and transitive. More generally:

Proposition 1. For every formula ϕ ∈ LP , (LP ,�ϕ) is a
Boolean lattice (LP ,⊓ϕ,⊔ϕ, ¬̇, ϕ,¬ϕ).

Every base B′ promoting ϕ in B satisfies ϕ �ϕ B
′ �ϕ B.

Thus B is (up to logical equivalence) the greatest formula
w.r.t. �ϕ promoting ϕ in B, and ϕ is (up to logical equi-
valence) the least formula w.r.t. �ϕ promoting ϕ in B.
Stated otherwise, the least demanding promotion of ϕ w.r.t.
B consists in letting B unchanged, while the promotion of
ϕ w.r.t. B leading to a formula as close as possible to ϕ
consists in replacing B by ϕ.
The following model-theoretic characterization of the no-

tion of promotion can be derived easily. N denotes the sym-
metric difference between sets:

Proposition 2. Given a formula ϕ, let B and B′ be two
belief bases such that B′ promotes ϕ w.r.t. B. Then
∃S ⊆ Mod(B)NMod(ϕ) such that Mod(B′) = (Mod(B) ∩
Mod(ϕ)) ∪ S.

This proposition also illustrates the fact that B and ϕ

plays symmetric role in the notion of promotion, i.e., B′ �ϕ

B if and only if B′ �B ϕ.
When a promotion of ϕ in B is achieved, the set of in-

terpretations assigning different truth values to the base B
and to ϕ may only diminish. Formally:

Proposition 3. Given a formula ϕ, let B and B′ be
two belief bases such that B′ promotes ϕ in B. Then
Mod(B′)NMod(ϕ) ⊆ Mod(B)NMod(ϕ).

We define a promotion operator ⊙ as a mapping from
LP ×LP to LP such that ψ ⊙ ϕ �ϕ ψ.
We can now lift the relation of formula promotion to

BRGs defined on the same set of variables V , acquaintance
relation A, propositional language LP and revision policies
R. Given two BRGs G = (V, A, LP , B, R) and G′ = (V,

A, LP , B
′, R) and a formula ϕ, we note G′ �ϕ G if and

only if for each agent i ∈ V , B′
i �ϕ Bi. Finally, we note

G⊙ ϕ any BRG G′ such that G′ �ϕ G. Observe that such
a promotion operation of ϕ in G can be non-uniform, i.e.,
it is not necessarily the case that the promotion of ϕ in dis-
tinct bases of G′ is achieved thanks to the same promotion
operator. For instance, it can be the case that B′

i = Bi for
agent i ∈ V , while B′

j = Bj ◦ϕ for agent j ∈ V , and B′
k = ϕ

for agent k ∈ V .

4. On Monotonicity in BRGs

In this section, we focus on the issue of monotonicity for
BRGs instantiated with revision policies from the six classes
defined in the previous section. Given a merging operator ∆

and E ⊆ {1, . . . , 6} RE
∆ denotes the set {Rk

∆ | k ∈ E}. We

use the simpler notation Rk
∆ instead of RE

∆ when E = {k}.

Given a class G of BRGs and E ⊆ {1, . . . , 6}, G(RE
∆) is the

subclass of all BRGs (V,A,LP ,B,R) from G where for each

Ri ∈ R, Ri ∈ RE
∆. Additionally, a set of revision policies

RE
∆ is said to satisfy a given property P on a given class G

of BRGs if all BRGs from G(RE
∆) satisfy P .

Given a BRG G = (V, A, LP , B, R), a subset C of V of
so-called “controllable agents” whose initial beliefs can be
modified, and a formula ϕ, one is interested in determining
how to modify the belief bases of agents in C in order to
make ϕ unanimously accepted in the resulting game (when
possible). The objective is thus to determine a success-
ful “control strategy” to be implemented in order to reach
the goal when it can be reached. A control strategy for G
given C takes here the form of a mapping σ from C to LP ,
stating for each i ∈ C that Bi must be replaced by σ(i);
it is successful for ϕ if ϕ is unanimously accepted in the
BRG obtained by applying σ to G. Typically, one wants
to minimize the number of agents in C to be controlled,
but the optimization problem under consideration can be
much more complex (for instance, it may consider the cost
of controlling each agent in C which is not always uniform).
Among the potential control strategies is the basic stra-

tegy σϕ for G given C defined for any i ∈ C by σ(i) ≡ ϕ:
it simply amounts to promoting ϕ as much as possible in
the belief base of each agent from C. We have the following
surprising result:

Proposition 4. Given a BRG G = (V, A, LP , B, R),
a set C ⊆ V of controllable agents, and a formula ϕ, it
can be the case that the basic strategy σϕ for G given C is
not successful for ϕ, while a control strategy for G given C
which is successful for ϕ exists.

Example 1 (continued). Assume that the goal of the
restaurant manager is to convince all protagonists that at
least one of the meals is healthy, i.e., ϕ = p1 ∨ p2. Note
that at the beginning, Chris’ beliefs coincide with this goal
(since B3 = ϕ) and that ϕ is not unanimously accepted. So
if Chris is the only controllable agent, the basic strategy σϕ

is not successful. However, when we replace Chris’ beliefs
by p1 ∧ p2 instead, we get that AccG∗

(i) = p1 ⊕ p2 for each
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steps s Bs
1 Bs

2 Bs
3

0 p1 ⊕ p2 ¬p1 ∧ ¬p2 p1 ∧ p2
s ≥ 1 p1 ⊕ p2 p1 ⊕ p2 p1 ⊕ p2

Table 2: An example of control strategy for G∗ where ϕ =
p1 ∨ p2 is unanimously accepted.

i ∈ V , so p1 ∨ p2 is unanimously accepted (see Table 2).
This shows that control is possible here given C = {3} as
the only controllable agent, but not with the basic strategy.

This illustrates the complexity of the controllability issue
for BRGs. It is therefore important to identify some con-
ditions on BRGs for which focusing on the basic strategy
would be enough to decide whether a positive answer can
be given or not to the controllability question. The follow-
ing strong monotonicity property, based on the promotion
relation, can be used as such conditions:

Definition 3 (Strong Monotonicity (SMon)). A BRG
G = (V, A, LP , B, R) satisfies (SMon) if for each i ∈ V ,
if ϕ is unanimously accepted in G, then ϕ is unanimously
accepted in any BRG G ⊙ ϕ.

BRGs satisfying (SMon) are interesting in terms of
strategy-proofness. Indeed, Proposition 1 tells us that ϕ
is the least element of (LP ,�ϕ). As a consequence, for
such BRGs, determining whether it is possible to convince
all the agents involved in the BRG to accept some piece of
belief ϕ simply amounts to determining whether ϕ is unani-
mously accepted in the BRG obtained by the promotion of
ϕ in every Bi associated with a controllable agent so that
Bi ⊙ ϕ = ϕ. Stated otherwise:

Proposition 5. Let G = (V, A, LP , B, R) satisfying
(SMon), a set C ⊆ V of controllable agents, and a formula
ϕ. If the basic strategy σϕ for ϕ is not successful, then there
is no control strategy for G given C that is successful for ϕ.

An interesting issue now is to know whether there are
BRGs satisfying (SMon). We provide a positive answer to
this question in the next section.

5. The Case of Complete Graphs

We now study the extent to which (SMon) is satisfied
by BRGs whose acquaintance graph is a complete graph.
This simple topology is adequate to the cases when all the
agents of V know each other (for instance, this is the case in
meetings where all agents are around a table). We simply
call the corresponding class of BRGs the complete BRGs:

Definition 4 (Complete BRG). A BRG G = (V, A, LP ,

B, R) is complete if (V,A) is a complete graph, i.e., for all
i, j ∈ V , i 6= j, (i, j) ∈ A. Given a class G of BRGs, Gcom

denotes the subclass of complete BRGs from G.

In the general case, (SMon) is not satisfied by BRGs

from Gcom(Rk
∆) with k ∈ {1, . . . , 6}, even when ∆ is “fully”

rational in the sense that it satisfies all IC postulates:

Proposition 6. For ∆ ∈ {∆dH ,
∑

,∆dH ,GMax}, for any k ∈

{1, . . . , 6}, Rk
∆ does not satisfy (SMon) on Gcom(Rk

∆).

Let us now consider complete BRGs when the mer-
ging operator used for defining the revision policies is the
distance-based merging operator based on the drastic dis-

tance (and the summation function) ∆dD ,Σ. Computing

∆dD,Σ
µ (C) consists in selecting in the models of the integrity

constraint µ those satisfying as many bases of the profile C
as possible. Several works have proved this specific operator
to satisfy a number of expected properties, e.g., some (lan-

guage) independence conditions [6, 8]. In particular, ∆dD ,Σ

is robust from the point of view of strategy-proofness [3],
this is why this operator appears as a good candidate for
the monotonicity issue. Indeed:

Proposition 7. Let k ∈ {1, . . . , 6}. Then all BRGs from

the class Gcom(Rk

∆dD,Σ) satisfy (SMon).

As a consequence, to decide whether a control strategy
exists for making a formula ϕ accepted by all agents in such
a BRG, it is enough to focus on the basic strategy.

6. Conclusion

We pointed out a quite paradoxical result in belief diffu-
sion: in a network of agents, replacing some agents’ belief
bases by a piece of belief ϕ may fail to make ϕ unanimously
accepted, while other successful strategies exist neverthe-
less. However, we have identified a class of BRGs satisfying
a property of strong monotonicity, and thus, avoiding this
paradox, making for these BRGs the belief control issue
easier to manage.
As perspectives for further research, we plan to identify

additional classes of BRGs for which the strong monoto-
nicity property holds, e.g., by considering other topologies
as the line, single loop and more generally regular graph
topologies. For all these BRGs, the next step will be to
search for control strategies by focusing now on the “who”
issue, i.e., which agents from a predefined set C should be
considered. Another interesting research direction is to in-
vestigate on its own the notion of “promotion” of a piece of
belief, as an attempt to provide an uniformized axiomati-
zation of a large class of standard belief change operators.
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