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Utilizing data from various sources to build multimodal models has been shown to be an effective way to build
more accurate and flexible models of mental stress. However, traditional machine learning techniques lack the
ability to effectively identify salient inter-modal correlations when diverse modalities are use together. In this
work we investigate the efficacy of multimodal models of stress built using a combination of psychological and
physiological data. A monitoring platform and unobtrusive wearable sensors were used to gathered data from
subjects engaged in authentic work activities. Models were built by combining psychological data from stress
coping profiles and physiological signals from the sensors then using self-annotated stress annotations to establish
ground truths. A performance comparison was then made between standard machine learning approaches and
deep multimodal learning. The results indicate that significant improvements can be achieved by applying deep
multimodal feature learning to construct mental stress models.

1. Introduction

Stress can be defined as a biochemical or physiological

change in response to internal and external stressors. It

is recognized by clinical studies [3] as a risk factor for a

number of cardio-vascular diseases and is one of the leading

causes of work disabilities worldwide. Due to its pervasive-

ness, automated mental stress monitoring and diagnosis has

gained popularity in recent years and is proving to be a po-

tential key technology for addressing more severe mental

health issues such as depression.

1.1 Multimodal Stress Models
Multimodal models involve using data from various

sources. In stress monitoring, this technology has seen ma-

jor advancements from the emergence of modern sensors.

Majority of the existing works rely primarily on physiolog-

ical and environmental signals. Of these, the most com-

monly used are galvanic skin response (GSR)[7, 6, 10] and

heart rate (HR)[7, 6, 10].

In [10] they used galvanic skin response (GSR), blood vol-

ume pulse, pupil diameter and skin temperature to detect

changes in stress levels. Models were built to distinguish

between two states: stressed and relaxed, and the study

achieved over 90% accuracy using support vector machines

(SVM). Other studies such as [7] followed a similar data

gathering framework. In [7] they tested out-of-laboratory

experiments using the Intel Shimmer platform which in-

cludes ECG, GSR and accelerometers. In the aforemen-

tioned work, stress was induced using the Stroop test and

mental arithmetic. Using accelerometer data, they showed

that additional activity context can also be used to improve

detection performance. In these, and many other works,

it is common to use traditional machine learning methods

Contact: Juan Lorenzo Hagad, Department of Archi-

tecture for Intelligence, 8-1 Mihogaoka, Ibaraki,

Osaka, 567-0047, Japan, +81-6-6879-8426,
hagad@ai.sanken.osaka-u.ac.jp

such as SVM and neural networks (NN) and train these on

simple combinations of the multimodal data. In this work,

we will show that these approaches are lacking. Aside from

this, many studies tend to rely on data from artificial stress

inducing tests such as the Stroop Test and other simulated

challenges. While these are designed to stimulate authentic

stress responses, there is a tendency towards exaggerated

conditions and stress responses. As a result, the resulting

model may not properly represent the full spectrum of sub-

tle stress responses that one may encounter in real-world

scenarios. On the other hand, using naturalistic data has

its own challenges since samples from natural environments

are susceptible to noise and have a tendency to feature less

pronounced expressions of stress. Furthermore, there is the

challenge of gathering ground truth labels. However, it is

necessary to investigate such models to discover authentic

features and build an appropriate model of real-world men-

tal stress.

To offset the effects of noise and other variabilities, we ap-

plied deep multimodal learning to discover useful patterns

within each modality and between modalities. We also at-

tempt to merge data from psychology and physiology by

combining coping profiles with wearable sensor signals, re-

spectively. It has long been recognized through evidence

from medicine and psychology that the stress response is

not simply a function of the severity of the stressor, but is

also borne from the ability of the organism to cope with it

[9]. Thus, individual coping variables can be used as factors

that affect the stress response.

2. Methods

2.1 Data and Annotations
All experiments were performed on computers equipped

with our purpose-built monitoring and annotation software.

Each subject conducted self-regulated work activities on

their personal PCs while using the software. This allowed

the experimenter to record the subjects personal profiles
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and work activities without direct supervision. Since most

experimental procedures involved minimal interaction be-

tween the experimenter and the subjects, transmission of

experimenter biases was also minimized.

Self-reported stress annotations were made immediately

following the hour-long work sessions. Using webcam and

desktop recordings, subjects reviewed and selected time seg-

ments in the recorded video where they performed various

work tasks. For each task, they identified the amount of

stress they felt at the time. A selection of work task cate-

gories and stressors were provided by the UI, and a 4-point

Likert-scale (1=very low, 4=very high) was used for the

stress annotations.

2.2 Physiological Signals
Participant physiological signals were measured using

wearable ECG sensors and wrist sensors. These wireless,

wearable devices allowed continuous measurement of heart

rate (HR) and skin conductance (SC), respectively.

Heart rate variability (HRV) features were extracted from

the HR data. These are HR features that have been shown

to have strong correlations with autonomic stress responses

[4]. Specifically, the following features were used: Aver-

age of NN intervals (AVNN), Standard deviation of NN

intervals (SDNN), root-mean-squared differences between

adjacent NN intervals (rMSSD), percentage of differences

between adjacent NN intervals greater than 50ms (pNN50),

spectral power measures of NN intervals of varying frequen-

cies (ULF, VLF, LF, HF) and the ratio of low to high fre-

quency power (LF/HF).

For GSR, two major components of the conductance sig-

nal were analyzed: skin conductance level (SCL) and the

skin conductance response (SCR) [1]. These features cover

different aspects of sympathetic neuronal activity. SCL re-

flects the tonic level or the slowly changing component of

the GSR signal, while SCR or rapid phasic refers to the

faster changing elements of the signal. These measurements

were obtained by using software included with the wearable

devices. The values were then cleaned and time-dependent

statistics were extracted such as the mean, variance, and

difference from the baseline levels.

2.3 Psychological Profiles
To build the personal profile, subjects answered the

COPE Inventory [2], a questionnaire designed to assess cop-

ing responses in response to stressful situations. It deter-

mines a person’s inclination towards exhibiting responses

that are expected to be either functional or dysfunctional.

Those with dysfunctional coping mechanisms are expected

to be more prone to the negative effects of stress. By in-

cluding these factors into our machine-learned models, we

hope to be able to reduce the ambiguity of stress features

relative to each subject.

2.4 Baseline Machine-Learners
Supervised and unsupervised machine learning tech-

niques were used to build baseline stress models to compare

with the deep learning models. These were selected from

machine learning techniques most commonly featured in re-

lated works. For the supervised models, we used support

vector machines (SVM) and mutilayer perceptrons (MLP),

and for the unsupervised model we used k-means cluster-

ing. The SVMs featured used radial basis function (RBF)

kernels since these have been shown to be highly flexible

for classification tasks. The MLPs featured a single hid-

den layer with a number of nodes equal to half of the sum

of the number of input attributes plus the number of out-

put classes. Finally, the number of k-means clusters were

adjusted to match the number of output classes.

2.5 Deep Feature Learning
In this work we implemented Deep Learning using Au-

toencoders [8]. These artificial neural network structures

are similar to traditional feed-forward networks. In its most

basic form it includes input, hidden, and output layers. Un-

like typical neural networks, autoencoders learn the ideal

parameters to generate an output that is a reconstruction

of the inputs. Through this process, the hidden layers are

able to discover latent features that can efficiently repre-

sent the training data. Specifically, we applied Denoising

Autoencoders (DA) a form of autoencoder that is trained

by reconstructing using stochastically corrupted versions of

the input.

The deep learning structures in this work used autoen-

coders stacked in a greedy layerwise fashion to form a deep

network similar to stacked Restricted Boltzmann Machines

(RBM) in deep belief networks [8]. The different levels of

the stack allow learning multiple levels of abstraction and

can be used to learn inter-modal features. However, strong

intra-modal feature correlations may still prevent the dis-

covery of some important inter-modal features.

Figure 1: Multimodal Deep Learning Structure

In [5], an study was performed to measure the saliency

of multimodal features discovered by different deep RBM

structures. It was discovered that models trained on shal-

low concatenations of audio and video features were not

able to capture effective correlations across the modalities.

Bimodal deep RBMs, those that featured pretraining at

different modal levels, were much better able to capture

these correlations. In this work, we apply the same concept,

however using stacked autoencoders to build the structure

shown in Figure 1.

3. Experiments and Results

Data was collected from 4 healthy male participants aged

20-32. All subjects were graduate school students from Os-
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aka University. Each subject performed at least 5 work

sessions with each session lasting 1 hour. These annota-

tions resulted in 184 usable work task segments labelled

with stress levels from 1 (very low stress) to 4 (very high

stress). Each task segment lasted around 5 to 30 minutes.

HR was recorded at a sampling frequency of 256Hz while

SC was recorded at 128Hz. All frequency-domain and time-

domain features were extracted over task segments.

3.1 Baseline Results
The baseline performance for the standard machine mod-

els are shown in Table 1. Classification performance was

measured using stratified 10-fold cross-validation accuracy.

Based on these results, all models performed better than

random classification with MLPs showing the best perfor-

mance.

Table 1: Baseline Performance Results

SVM MLP K-means Random

42.069% 47.414% 40.702% 29.501%

3.2 Denoising Autoencoder Results
For the first round of experiments, we built and tested

models using Denoising Autoencoders (DA). For the fol-

lowing experiments we used DAs with 5x overcomplete hid-

den units for the combination of physiological features (105

units) connected to a logistic regression layer. Pretraining

was performed over 100 epochs and with a 0.001 learning

rate. The per-fold results are listed in Table 2. When com-

paring the performance of DAs to MLPs, we noted a rise in

mean accuracy from 47.90% to 50.53%. However, statisti-

cal analysis via a paired t-test indicated that this was not

sufficiently significant (p=0.16).

3.3 Stacked Autoencoder Results
In the next investigation, we attempted to discover fea-

tures through a deep structure. We built and tested Stacked

Denoising Autoencoders (SDA) and compared their perfor-

mance with the previous DAs on the 4-class dataset. For

the SDA we used 3 hidden layers based on results cited

in [8]. Once again, we used 5x overcomplete hidden units

(105 units) for each of the hidden layers. Pretraining was

performed using 100 epochs and at a 0.001 learning rate.

Referring to the results in Table 2 and comparing the

results of the single layer DA and the 3-layer SDA, there

is a slight reduction in performance. Intuition states that

adding more layers may eventually lead to improvements,

so to confirm that these were optimal results we also tested

models with additional layers. As shown by the pattern of

performance in Figure 2, deviating from 3 layers actually

leads to similar or worse performance. Error bars indicate

standard error over 10-fold cross-validation accuracy. Basi-

cally, results indicate that using 1 or 2 layers leads to a high

variation in performance, while adding more layers beyond

3 leads to a dramatic decrease in performance.

3.4 Multimodal Deep Learning Results
For the final experiment we modified our approach by ap-

plying multimodal deep learning (MDL) [5]. Each modality

Figure 2: Stack Depth Test Results

was pre-trained as its own isolated denoising autoencoder.

This allowed the discovery of unimodal latent features. On

top of these, we placed a fully-connected autoencoder layer

intended to learn a shared coding for the inter-modal fea-

tures. Finally, the last layer was a softmax logistic regres-

sion layer used for supervised learning and classification.

When comparing the performance of the final model with

the previous attempts, there is a noticeable improvement.

Based on Table 2, the MDL model achieved a 54% accuracy,

which is an additional 5.26% compared to the SDA using

only concatenation of features (48.95%). This time results

were statistically significant with p=0.008 at α=0.05. Fur-

thermore, we noticed a reduced variability with regards to

how the model performed on the different folds.

4. Discussion

In the first experiment we compared single-layer DAs

with single-layer MLPs in order to assess the effects of la-

tent feature discovery. Focusing on the mean accuracy, we

noted an increase of 2.63% after using DAs. However, sta-

tistical analysis revealed that the improvements were not

significant. A possible explanation is that although latent

features were discovered, they lacked sufficient discrimina-

tive ability due to the model not being able to learn inter-

modal features due to the shallow structure. For the next

investigation we attempted to use a deeper structure.

The outcome for the SDA experiment was surprising since

deep learning is usually expected to lead to improvements,

however based on these results it was instead detrimen-

tal. Statistical testing shows that this was not significant

(p=0.19), although it still meant that there was no observ-

able advantage to simply applying a deeper model. It was

apparent that the problem was with how the data fusion

was handled. In the succeeding experiment, we corrected

the approach by applying MDL.

Based on the results in Table 2, significant performance

were made by applying a MDL strategy. The final MDL

model achieved a 54% accuracy, an additional 5.26% com-

pared to the SDA, and a statistically significant improve-

ment with p=0.008 at α=0.05. In addition, there was less

variability with regards to how the model performed on the
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Table 2: Comparison of Performance Results

Model
Fold

Mean Variance
1 2 3 4 5 6 7 8 9 10

MLP 47.37% 47.37% 47.37% 47.37% 47.37% 47.37% 47.37% 52.63% 47.37% 47.37% 47.89% 2.77%

DA 47.37% 52.63% 52.63% 47.37% 52.63% 47.37% 47.37% 52.63% 52.63% 52.63% 50.53% 7.39%

SDA 47.37% 47.37% 47.37% 47.37% 47.37% 47.37% 57.89% 47.37% 47.37% 52.63% 48.95% 12.62%

MDL 57.89% 57.89% 52.63% 52.63% 57.89% 52.63% 52.63% 52.63% 52.63% 52.63% 54.21% 6.46%

different folds. These results, indicate that a deep multi-

modal learning approach is an effective modelling strategy

for classifying multimodal stress data.

5. Summary and Conclusion

In summary, this work presented an improved method

for building mental stress models using multimodal data

and multimodal deep learning. By using a monitoring plat-

form and unobtrusive wearable sensors, data was gath-

ered from subjects engaged in authentic work activities.

Psychology-based annotation tools collected stress-related

context while wearable sensors tracked physiological sig-

nals of heart rate and skin conductance. Then, different

structural combinations of autoencoders were tested to dis-

cover which could best identify latent features between the

physiological and psychological data. Specifically, single-

layer denoising autoencoders (DA), a 3-layer stacked de-

noising autoencoders(SDA), and an SDA with a multimodal

deep learning scheme(MDL) were used. All models per-

formed better than the baseline traditional models using

standard machine learning methods. The most significant

improvements were achieved by applying the MDL. On the

other hand, simple feature-level concatenation (i.e., in the

SDA) resulted in a slight performance loss compared to sin-

gle layer DAs. These results support findings from previ-

ous works in multimodal learning that state that combina-

tions of certain modalities require separate feature learning

phases to discover unimodal features and multimodal fea-

tures. All models performed better than random despite

using naturalistic work activity data without artificially in-

jected stressors. Furthermore, significant performance gains

were achieved by applying a multimodal deep learning strat-

egy compared to all other tested approaches. These results

show that deep multimodal learning is an effective method

of building psycho-physiological stress models.
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