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Parallel best-first search algorithms such as HDA* distribute work among the processes using a global hash
function. We introduce an objective function to simultaneously minimize both search and communication overheads,
which corresponds to partitioning the search space with a sparsest-cut objective. We propose SAZHDA*, which
approximates this objective by partitioning the domain transition graph, an abstraction of the state space graph.

1. Introduction
The A* algorithm [Hart 68] is used in many areas of AI, includ-

ing planning, scheduling, path-finding, and sequence alignment.
Parallelization of A* can yield speedups as well as a way to over-
come memory limitations – the aggregate memory available in a
cluster can allow problems that can’t be solved using 1 machine to
be solved. Thus, designing scalable, parallel search algorithms is
an important goal.

Hash Distributed A* (HDA*) is a parallel best-first search
algorithm in which each processor executes A* using local
OPEN/CLOSED lists, and generated nodes are assigned (sent) to
processors according to a global hash function [Kishimoto 13].
HDA* can be used in distributed memory systems as well as multi-
core, shared memory machines, and has been shown to scale up to
hundreds of cores with little search overhead. The performance
of HDA* depends on the hash function used for assigning nodes
to processors. Kishimoto et al. [Kishimoto 09, Kishimoto 13]
showed that using the Zobrist hash function [Zobrist 70], HDA*
could achieve good load balance and low search overhead. Burns
et al [Burns 10] noted that Zobrist hashing incurs a heavy commu-
nication overhead because many nodes are assigned to processes
that are different from their parents, and proposed AHDA*, which
used an abstraction-based hash function originally designed for
use with PSDD [Zhou 07] and PBNF [Burns 10]. Abstraction-
based work distribution achieves low communication overhead,
but at the cost of high search overhead. Abstract Zobrist hash-
ing (AZH) [Jinnai 16a] achieves both low search overhead and
communication overhead by incorporating the strengths of both
Zobrist hashing and abstraction. While the Zobrist hash value of
a state is computed by applying an incremental hash function to
the set of features of a state, AZH first applies a feature projec-
tion function mapping features to abstract features, and the Zo-
brist hash value of the abstract features (instead of the raw fea-
tures) is computed. Improvements to domain-independent, au-
tomated abstract feature generation methods for AZHDA* were
proposed in [Jinnai 16a]. Although these methods seek to reduce
search/communication overheads in the HDA* framework, these
methods can be characterized as bottom-up, ad hoc approaches
that introduce new mechanisms to address some particular prob-
lem within the HDA*/AZHDA* framework, but these methods
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do not allow a priori prediction of the communication and search
overheads that will be incurred.

This paper proposes a new, top-down approach to minimizing
overheads in parallel best-first search. Instead of addressing spe-
cific problems/limitations within the AZHDA* framework, we for-
mulate an objective function which defines exactly what we seek in
terms of minimizing both search and communications overheads,
enabling a predictive model of these overheads. We then pro-
pose an algorithm which directly synthesizes a work distribution
function approximating the optimal behavior according to this ob-
jective. The resulting algorithm, SAZHDA* significantly outper-
forms all previous variants of HDA*.

2. Background
Hash Distributed A* (HDA*) [Kishimoto 13] is a parallel A* al-

gorithm where each processor has its own OPEN and CLOSED. A
global hash function assigns a unique owner thread to every search
node. Each thread T repeatedly executes the following: (1) For all
new nodes n in T ’s message queue, if it is not in CLOSED (not
a duplicate), put n in OPEN. (2) Expand node n with highest pri-
ority in OPEN. For every generated node c, compute hash value
H(c), and send c to the thread that owns H(c).

Although an ideal parallel best-first search algorithm would
achieve a n-fold speedup on n threads, several overheads can pre-
vent HDA* from achieving linear speedup.
Communication Overhead (CO): Communication overhead is
the ratio of nodes transferred to other threads: CO :=
# nodes sent to other threads

# nodes generated . CO is detrimental to performance because of
delays due to message transfers (e.g., network communications),
as well as access to data structure such as message queues. HDA*
incurs communication overhead when transferring a node from the
thread where it is generated to its owner according to the hash
function. In general, CO increases with the number of threads. If
nodes are assigned randomly to the threads, CO will be propor-
tional to 1− 1

#thread
.

Search Overhead (SO): Parallel search usually expands more
nodes than sequential A*. In this paper we define search over-
head as SO := # nodes expanded in parallel

#nodes expanded in sequential search − 1. SO can arise due
to inefficient load balance (LB). If load balance is poor, a thread
which is assigned more nodes than others will become a bottleneck
– other threads spend their time expanding less promising nodes,
resulting in search overhead.
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There is a fundamental trade-off between CO and SO. Increas-
ing communication can reduce search overhead at the cost of com-
munication overhead, and vice-versa.
Zobrist Hashing, Abstraction, and Abstract Zobrist Hashing

In the original work on HDA*, Kishimoto et al. [Kishimoto 13]
used Zobrist hashing [Zobrist 70]. The Zobrist hash value of a
state s, Z(s), is calculated as follows. For simplicity, assume that
s is represented as an array of n propositions, s = (x0, x1, ..., xn).
Let R be a table containing preinitialized random bit strings.

Z(s) := R[x0] xor R[x1] xor · · · xor R[xn]

Zobrist hashing seeks to distribute nodes uniformly among all
threads, without any consideration of the neighborhood structure
of the search space graph. As a consequence, communication over-
head is high. Assume an ideal implementation that assigns nodes
uniformly among threads. Every generated node is sent to another
thread with probability 1− 1

#threads
. Therefore, with 16 threads,

> 90% of the nodes are sent to other threads, so communication
costs are incurred for the vast majority of node generations.

Abstract Zobrist hashing (AZH) [Jinnai 16a] is a hybrid hashing
strategy which augments the Zobrist hashing framework with the
idea of projection from abstraction [Burns 10] to reduce CO. The
AZH value of a state, AZ(s) is:

AZ(s) := R[A(x0)] xor R[A(x1)] xor · · · xor R[A(xn)] (1)

where A is a feature projection function, a many-to-one mapping
from from each raw feature to an abstract feature, and R is a pre-
computed table for each abstract feature. Thus, AZH is a 2-level,
hierarchical hash, where raw features are first projected to abstract
features, and Zobrist hashing is applied to the abstract features.

Compared to Zobrist hashing, AZH incurs less CO due to ab-
stract feature-based hashing. While Zobrist hashing assigns a hash
value for each node independently, AZH assigns the same hash
value for all nodes which share the same abstract features for all
features, reducing the number of node transfers.
Domain-Independent Feature Projection Functions for Ab-
stract Zobrist Hashing

The feature projection function plays a critical role in determin-
ing the performance of AZH, because AZH relies on the feature
projection in order to reduce communications overhead. Greedy
abstract feature generation (GreedyAFG) is a simple, domain-
independent abstract feature generation method, which partitions
each feature into 2 abstract features [Jinnai 16a]. GreedyAFG
first identifies atom groups (sets of mutually exclusive proposi-
tions from which exactly one will be true for each reachable state,
e.g., the values of a SAS+ multi-valued variable [Bäckström 95]).
Each atom group G is partitioned into 2 abstract features S1 and
S2, based G’s undirected transition graph (nodes are propositions,
edges are transitions), as follows: (1) assign the minimal degree
node to S1; (2) greedily add to S1 the unassigned node which
shares the most edges with nodes in S1; (3) while |S1| < |G|/2
repeat step (2) to guarantee ; (4) assign all unassigned nodes to S2.
This procedure guarantees |S2| ≤ |S1| ≤ |S2|+ 1.

3. Parallel Efficiency and Graph Partitioning
Although previous research on work distribution for HDA*

proposed methods which reduce CO or SO, there was no ex-

plicit model which enabled the prediction of the actual efficiency
achieved during search. In this section, we develop a metric to es-
timate the walltime efficiency as a function of CO and SO. First,
we define time efficiency effactual :=

speedup
#cores

. Our ultimate goal
is to maximize effactual .
Communication Efficiency: Assume that the communication
cost between every pair of processors is identical. Then communi-
cation efficiency, the degradation of efficiency by communication
cost, is effc = 1

1+cCO
, where c = time for sending a node

time for generating a node .
Search Efficiency: Assuming every core expands 1 node at a
time and there are no idle cores, HDA* with p processes expands
np nodes in the same wall-clock time A* requires to expand n

nodes. Therefore, search efficiency, the degradation of efficiency
by search overhead, is effs = 1

1+SO
.

Next, we discuss the relationship between SO and load bal-
ance (LB). It has been shown experimentally that an inefficient
LB leads to high SO [Jinnai 16a], but there was no analysis on
how LB leads to SO. Assume that all nodes have unique f val-
ues and f∗ to be an optimal cost. We define state space S as
S(v ∈ S|f(v) ≤ f∗). To guarantee the optimality of a solution,
HDA* needs to expand all nodes in S. Assume that the number of
duplicate nodes is negligible, and that a work distribution method
allocates nodes in Si(v ∈ Si|v ∈ S; v /∈ Sj ; i ̸= j) to pro-
cess pi. As HDA* needs to expand all nodes in state space, each
process expands maxj |Sj | nodes before HDA* terminates. As a
consequence, process pi expands maxj |Sj | − |Si| nodes outside
the search space (f > f∗), which results in SO. The sum for all
processes is SO =

∑p
i (maxj |Sj | − |Si|) = p(LB − 1), where

LB =
maxj |Sj |
avgi|Si|

, and avgi|Si| is average |Si| of all processes.
Using CO and LB, we can estimate the time efficiency effactual .

effactual is proportional to the product of communication and
search efficiency: effactual ∝ effc ·effs . There are overheads other
than CO and SO such as hardware overhead (i.e. memory bus con-
tention) that affect performance [Burns 10], but we assume that
CO and SO are the dominant factors in determining efficiency.

We define estimated efficiency effesti := effc · effs , and we
use this metric to estimate the actual performance (efficiency) of a
work distribution method.

effesti = effc · effs = 1/
(
(1 + cCO)(1 + SO)

)
= 1/

(
(1 + cCO)(1 + p(LB − 1))

)
(2)

3.1 Work Distribution as a Graph Partitioning
Work distribution methods for hash-based parallel search dis-

tribute nodes by assigning a process to each node in the state space.
Our goal is to design a work distribution method which maximize
efficiency by reducing LB and CO. The workload distribution of a
parallel search method can be modeled as a partitioning of a work-
load graph WG which is isomorphic to the search space graph,
i.e., nodes in WG correspond to states in the search space, and
edges in the workload graph correspond to edges in the search
space. The distribution of nodes among p processors is a p-way
partition of WG , where nodes in partition Si are assigned to pro-
cess pi. Given a partitioning of WG, LB and CO can be pre-
dicted directly from the structure of the graph, without having to
run HDA* and measure LB and CO experimentally, i.e., it is pos-
sible to analyze the efficiency of a workload distribution method
independently from its parallel execution. LB corresponds to load
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balance of the partitions and CO is the # of edges between parti-
tions over the number of total edges, i.e.,

CO =

∑k
i

∑k
j>i E(Si, Sj)∑k

i

∑k
j>i E(Si, Sj)

, LB =
maxi |Si|
avgi|Si|

(3)

where |Si| is the # of nodes in partition Si and E(Si, Sj) is the
# of edges between Si and Sj . Applying the equation to nodes
with f < f∗, gives us the values for CO, LB, SO, and effesti of
the work distribution method for the instance.

We compared effesti model and actual efficiency on planning in-
stances and the results are shown in Figure 1a. Using least-square
regression to estimate the coefficient a in effactual = a · effesti ,
a = 0.86 with variance of residuals 0.013. Note that a < 1.0 be-
cause there are other sources of overhead which not accounted for
in effesti , (e.g. memory bus contention) which affect performance
[Burns 10].

4. Sparsity-Based Workload Partitioning
A standard approach to workload balancing in parallel scientific

computing is graph partitioning, where the workload is represented
as a graph, and a partitioning of the graph according to some objec-
tive (usually the cut-edge ratio metric) represents the allocation of
the workload among the processors [Hendrickson 00, Buluç 13].

In Sec. 3., we showed that effesti can be used to effectively
predict the actual efficiency of a work distribution. By defining
a graph cut objective such that the partitioning the nodes in the
search space (with f < f∗) according to this graph cut objective
corresponds to maximizing effesti , we would have a method of
generating an optimal workload distribution.

A sparsest cut objective for graph partitioning problem seeks to
maximize the sparsity of the graph [Leighton 99].We define spar-
sity as

Sparsity :=

∏k
i |Si|∑k

i

∑k
j>i E(Si, Sj)

, (4)

where |Si| is the sum of nodes weights in partition Si,
E(Si, Sj) is the sum of edge weights between partition Si and
Sj . Consider the relationship between the sparsity of a state space
graph for a search problem and the effesti metric defined in the
previous section. By equations 2 and 3, Sparsity simultaneously
considers both LB and CO, as the numerator

∏k
i |Si| corresponds

to LB and the denominator
∑k

i

∑k
j>i E(Si, Sj) corresponds to

CO.
The comparison of Sparsity and effesti using METIS graph par-

titioning package is shown in Figure 1c. There is a clear corre-
lation between sparsity and effesti . Thus, partitioning a graph to
maximize sparsity should maximize the effesti objective, which
should in turn maximize actual walltime efficiency.

5. Sparsest Cut Abstract Feature Generation
Since effesti model accurately estimates actual efficiency, and

sparsity has a strong correlation with effesti , a partition of the state
space graph which minimize sparsity should be a (near) optimal
work distribution which maximizes effesti . Unfortunately, it is im-
practical to directly apply standard graph partitioning algorithms
to the state space graph because the state space graph is a huge
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GreedyAFG cut
(GAZHDA*)

Figure 2: Example of sparsest cut and GreedyAFG to a domain transition
graph in logistic domain. Assume unit edge cost for simplicity, Sparses-
tAFG achieves Sparsity = 24.

implicit graph, and the partitioner needs as input the explicit repre-
sentation of the relevant state space graph (a solution to the search
problem itself!).

Therefore, to generate a work distribution method for parallel
A*, we have to partition some graph which is easily accessible
from the domain description (e.g. PDDL, SAS+). We propose
Sparsest-cut based Abstract Zobrist HDA* (SAZHDA*), which
approximates the optimal strategy by partitioning domain transi-
tion graphs.

Given an atom group x ∈ X , its domain transition graph (DTG)
Dx(E, V ) is a directed graph where vertices V corresponds to the
value of the atom group and edges E to their transitions, where
(v, v′) ∈ E if and only if there is an operator o with v ∈ del(o)

and v′ ∈ add(o) [Jonsson 98]. We used DTGs of SAS+ variables.
Figure 2 shows the sparsest cut of a DTG (for the variable rep-
resenting package location) in the standard logistics domain.
Maximizing sparsity results in cutting only 1 edge (i.e., good load
balance).

SAZHDA* treats each partition of the DTG as an abstract fea-
ture in the AZH framework, assigning a hash value to each ab-
stract feature. Since the AZH value of a state is the XOR of the
hash values of the abstract features (Eqn 1), 2 nodes in the state
space are in different partitions if and only if they are partitioned
in any of the DTGs. . Therefore, SAZHDA* generates 2n par-
titions from n DTGs, which are then projected to the p proces-
sors (by taking the partition ID modulo p). To make it likely that
partitioning over the DTGs is a good approximation for partition-
ing the actual state space graph, we set a weight for each edge
e = # ground actions which correspond to the transition

# ground actions . As DTGs typically have
< 10 nodes, we compute the optimal sparsest cut with a straight-
forward branch-and-bound procedure.

6. Evaluation of SAZHDA*

Instance A* SAZHDA*

speedup
FAZHDA*

speedup
GAZHDA*

speedup
OZHDA*

speedup
DAHDA*

speedup
ZHDA*

speedup
time expd

Blocks10-0 129.26 11065451 27.16 26.01 21.80 16.46 24.44 14.93
Blocks11-1 621.74 52736900 34.37 34.25 29.20 28.59 33.22 27.98
Elevators08-5 165.22 7620122 27.65 29.35 17.57 22.57 27.96 27.68
Elevators08-6 453.21 18632725 44.12 31.71 31.37 41.12 27.33 21.88
Gripper8 517.41 50068801 26.67 29.45 21.86 24.77 22.14 21.66
Logistics00-10-1 559.45 38720710 27.64 25.98 19.77 27.40 26.88 19.40
Miconic11-0 232.07 12704945 42.83 42.43 22.10 34.96 41.98 9.05
Nomprime5 309.14 4160971 28.89 22.87 18.55 16.66 18.89 17.85
Openstacks08-21 554.63 19901601 46.03 29.97 40.66 39.34 23.42 39.06
PipesNoTk10 157.31 2991859 15.73 15.64 15.58 15.22 17.12 14.88
Scanalyzer08-6 195.49 10202667 32.92 31.23 20.28 23.70 24.81 19.38
Total time[sec] 3894.93 228806752 122.84s 135.96s 163.58s 147.12s 153.32s 188.11s
Average speedup 354.08 20800614 32.18 28.99 23.52 26.44 26.20 21.25
Average effactual 0.67 0.60 0.49 0.55 0.55 0.44
Average effesti 0.64 0.57 0.56 0.57 0.56 0.47
Average CO 0.44 0.50 0.78 0.61 0.40 0.97
Average SO 0.11 0.13 0.01 0.13 0.28 0.07

Table 1: Comparison of speedups, search/communication overheads (SO,
CO), estimated/actual efficiencies (effesti , effactual ).
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Figure 1: Figure 1a compares effesti when c = 1.0, p = 48. Bold indicates that SAZHDA* has the best effesti (except for IdealApprox). Figure 1b
compares effesti and the actual experimental efficiency when c = 1.0, p = 48. effactual = 0.86 · effesti with variance of residuals = 0.013 (least-squares
regression). Figure 1c compares sparsity vs. effesti . For each instance, we generated 3 different partitions using METIS with load balancing constraints
which force METIS to balance randomly selected nodes, to see how degraded sparsity affects effesti .

Figure 1a shows effesti for the various work distribution meth-
ods, including SAZHDA*. To evaluate how these methods com-
pare to an ideal (but impractical) model which actually applies
graph partitioning to the entire search space (instead of partition-
ing DTG as done by SAZHDA*), we also evaluated IdealApprox,
a model which partitions the entire state space graph using the
METIS (approximate) graph partitioner [Karypis 98]. IdealAp-
prox first enumerates a graph containing all nodes with f ≤ f∗

and edges between these nodes and ran METIS with the sparsity
objective (Eqn. 4) to generate the partition for the work distribu-
tion. Generating the input graph for METIS takes an enormous
amount of time (much longer than the search itself), so IdealAp-
prox is clearly an impractical model, but it is a useful approxima-
tion for an ideal work distribution.

Not surprisingly, IdealApprox has the highest effesti , but among
all of the practical methods, SAZHDA* has the highest effesti

overall. As we saw that effesti is a good estimate of actual effi-
ciency, the result suggest that SAZHDA* outperforms other meth-
ods. In fact, as shown in Table 1, SAZHDA* achieved a good
balance between CO and SO and had the highest actual speedup
overall, significantly outperforming all other previous methods in-
cluding previous state-of-the-art FAZHDA* [Jinnai 16b].

7. Conclusions
We proposed and evaluated a new, domain-independent ap-

proach to work distribution for parallel best-first search in the
HDA* framework. The main contributions are (1) proposal
and validation of effesti , a model of search and communication
overheads for HDA* which can be used to predict actual wall-
time efficiency, (2) formulating the optimization of effesti as a
graph partitioning problem with a sparsity objective, and vali-
dating the relationship between effesti and the sparsity objective,
and (3) SAZHDA*, a new work distribution method which ap-
proximate the optimal strategy by partitioning domain transition
graphs. We experimentally showed that SAZHDA* significantly
improves both estimated efficiency (effesti ) as well as actual per-
formance (walltime efficiency) compared to previous work dis-
tribution methods. Our results demonstrate the viability of ap-
proximating the partitioning of the entire search space by apply-
ing graph partitioning to an abstraction of the state space (i.e., the
DTG).
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