4F1-5in

スペクトルデータの潜在的ダイナミクス抽出

Extraction of latent dynamics from time-series spectral data

村田伸*1 永田賢二*1 岡田真人*1*2 Shin MURATA Kenji NAGATA Masato OKADA

*1東京大学大学院新領域創成科学研究科

Graduate School of Frontier Sciences, The University of Tokyo

*2独立行政法人理化学研究所脳科学総合研究センター

RIKEN Brain Science Institute

In a broad range of fields, spectral data is obtained from spectroscopy. Spectral data have complex structure. Spectral decomposition is a method to fit each peak of data to a unimodal basis function. Center, width and amplitude of each peak reflect the nature of the subject. In recent years, time-series spectral data is obtained. However, we usually analyze the data independently. In this research, we propose the method to analyze time-series spectral data by using Bayesian inference, and validate its efficacy by using synthetic data.

1. 序論

様々な科学分野で分光計測からスペクトルデータが得られ ている.スペクトルデータは、複雑な多峰性の構造を持って おり、各ピークの中心位置や幅、強度に対象の性質が反映され ている.そのため、スペクトルデータを単峰性の基底関数で フィッティングし、ピークのパラメータを推定するスペクトル 分解は、スペクトルデータの解析において、重要な手法である [Nagata 12].

近年、スペクトルデータが時間的に計測された、時系列ス ペクトルデータが得られている。例えば、物性科学における 時間分解 X 線光電子分光法や天文学におけるブラックホー ル観測が挙げられる。時間分解 X 線光電子分光法では、対 象の物質で起きている化学反応を追跡することが可能である [Nugent-Glandorf 01].また、ブラックホールに物質が吸い込 まれる際に発する、短時間スケールで変化する光を観察するこ とでブラックホールを観測することができる [Celotti 99].こ のように、時系列スペクトルデータからその観測対象の背後に あるダイナミクスを抽出することは、広い分野にまたがる重要 な課題である。

しかしながら、時系列構造を考慮したスペクトル分解手法 は開発されておらず、各時刻で独立にスペクトル分解を行う方 法が主流である.本研究では、時間構造を考慮したスペクトル 分解手法を提案する.人工データを用いて、その性能を検証 し、従来の各時刻独立な解析を行うより、性能が高いことを人 工データを用いて示した.

本原稿は全4章で構成されている。2章では提案する推定 手法を説明する。3章では人工データを用いて推定手法の有効 性を検証する。4章で得られた結果をまとめ、今後の展望を述 べる。

2. 確率的定式化

2.1 時系列構造を考慮したスペクトル分解

本研究では、図 1(a) に示すような、時系列スペクトルデータ を統合的に取り扱うベイズ推論の枠組みを提案する.まず、同 時確率分布 $p(\mathbf{Y}, \Theta, \mathbf{W}, \mathbf{m})$ を考える.ここで、 $\mathbf{W} = \{w_{k,\tau}\}$,

連絡先: 岡田真人 okada@k.u-tokyo.ac.jp

図 1: 本研究で考慮する階層構造. 潜在的動力学からパラメー タの時系列が生成され, それらのパラメータに従いスペクトル データが観測される.

 $m = \{m_k\} は潜在的動力学を表すパラメータとする. ま$ た,各時刻でのスペクトルデータのピークを表すパラメータ $を <math>\theta = \{a_{k,t}, \mu_{k,t}, \sigma_{k,t}\}_{k=1}^{K}$ をとし、全時刻のパラメータセ ットを $\Theta = \{\theta_t\}_{t=1}^{T}$ とする.ここで、 $a_{k,t}$ はピークの強度、 $\mu_{k,t}$ はピーク中心、 $\sigma_{k,t}$ はピークの幅を表す.各時刻で観測 データ $y_t = (y_{1t}, \dots, y_{Nt})$ とし、時系列スペクトルデータを $Y = (y_1, \dots, y_T)$ とする.

図 1(b) に示すような生成・観測プロセスを考慮する. すな わち, $W = \{w_{k,\tau}\}, m = \{m_k\}$ は独立に生成されると考え, p(W, m) = p(W)p(m)である. スペクトルデータのパラメー タセット Θ は, Wと, mから生成され, $p(\Theta | W, m)$ である. パラメータセット Θ が与えられたとき, 全スペクトルデー タYが観測される確率は, $p(Y | \Theta)$ と表される. 従って, 同時確率分布は,

$$p(\boldsymbol{Y}, \Theta, \boldsymbol{W}, \boldsymbol{m}) = p(\boldsymbol{Y} \mid \Theta)p(\Theta \mid \boldsymbol{W}, \boldsymbol{m})p(\boldsymbol{W})p(\boldsymbol{m}) \quad (1)$$

となる. 従来のスペクトル分解 [Nagata 12] を独立に T 回行 うことは,同時確率分布で $p(\mathbf{Y}, \Theta) = \prod_t p(\mathbf{y}_t, \theta_t)$ と表され, $W \ge m$ が存在せず,時間構造を考慮していないことが分かる. 本研究では,ピーク中心 { $\mu_{k,t}$ } が自己回帰モデル (AR モ デル)

$$\mu_{k,t} = \sum_{\tau=1}^{d} w_{k,\tau} \mu_{k,t-\tau} + m_k + e_{k,t}$$
(2)

で生成されると考える. ここで, $w_{k,\tau}$ は, k 番目のピーク中 心 $\mu_{k,t}$ が τ ステップ前のピーク中心 $\mu_{k,t-\tau}$ から受ける影響を 表し, m_k は定数の入力, $e_{k,t}$ は $\mathcal{N}(0, \sigma_{AR}^2)$ の正規分布に従う ノイズである [Akaike 69]. また, ピークの強度 $a_{k,t}$, 幅 $\sigma_{k,t}$ は時間変化せず一定であるとする. このとき, W, m が与え られたときの, パラメータセットの条件付き確率は,

$$p(\Theta \mid \boldsymbol{W}, \boldsymbol{m}) = p(a_k)p(\sigma_k)p(\{\mu_{k,t}\} \mid \boldsymbol{W}, \boldsymbol{m})$$
(3)

となる. ピーク中心の時系列の条件付き確率 $p(\{\mu_{k,t}\} | \boldsymbol{W}, \boldsymbol{m})$ は,式 (2)のノイズ $e_{k,t}$ が正規分布に従うとき,二乗和誤差 関数

$$E_{AR} = \frac{1}{2KT} \sum_{k=1}^{K} \sum_{t=1}^{T} \left| \mu_{k,t} - \left(\sum_{\tau=1}^{d} w_{k,\tau} \mu_{k,t-\tau} + m_k \right) \right|^2 \quad (4)$$

を考えると、次のボルツマン分布で表される.

$$p(\{\mu_{k,t}\} \mid \boldsymbol{W}, \boldsymbol{m}) \propto \exp\left[-\frac{KT}{\sigma_{AR}^2} E_{AR}\right]$$
 (5)

図 1(b) にあるように,各時刻 $t = 1, \dots, T$ では,パラメー タセット $\theta_t = \{a_k, \mu_{k,t}, \sigma_k\}_{k=1}^K$ が与えられた下で,スペクト ルデータ $y_t = (y_{1t}, \dots, y_{Nt})^T$ は次のように観測される.

$$y_{it} = f(x_i; \theta_t) + e_{it}, \tag{6}$$

$$f(x_i;\theta_t) = \sum_{k=1}^{n} a_k \phi(x_i;\sigma_k,\mu_{k,t}), \qquad (7)$$

$$\phi(x_i; \sigma_k, \mu_{k,t}) = \exp\left[-\frac{1}{2\sigma_k^2} \left(x_i - \mu_{k,t}\right)^2\right] \qquad (8)$$

各時刻での観測値と真の値の二乗和誤差

$$E_t(\theta_t) = \frac{1}{2N} \sum_{i=1}^N |y_{it} - f(x_i; \theta_t)|^2, (t = 1, \cdots, T)$$
(9)

ならびに, 全時刻での二乗和誤差

$$E(\Theta) = \frac{1}{T} \sum_{t=1}^{T} E_t(\theta_t)$$
(10)

を考える.式(6)のノイズ e_{it} が、 $\mathcal{N}(0,\sigma_o^2)$ の正規分布に従う とき、各時刻での観測が独立であると仮定すると、パラメータ セット Θ が与えられたときの全スペクトルデータ Y が観測さ れる条件付き確率は、次のボルツマン分布に従う.

$$p(\boldsymbol{Y}|\Theta) = \prod_{t=1}^{T} p(\boldsymbol{y}_t \mid \theta_t) \propto \prod_{t=1}^{T} \exp\left[-\frac{N}{\sigma_o^2} E_t(\theta_t)\right] (11)$$
$$\propto \exp\left[-\frac{NT}{\sigma_o^2} E(\Theta)\right]$$
(12)

以上の定式化から、スペクトルデータ Y が観測されたとき の全時刻でのピークのパラメータ Θ ,潜在的動力学構造を表 す W, m, の事後確率は,

$$p(\Theta, \boldsymbol{W}, \boldsymbol{m} \mid \boldsymbol{Y})$$

$$\propto \quad p(\boldsymbol{Y} \mid \Theta) p(\Theta \mid \boldsymbol{W}, \boldsymbol{m}) p(\boldsymbol{W}) p(\boldsymbol{m}) \quad (13)$$

$$\propto \quad \exp\left[-\frac{NT}{\sigma_{\sigma}^{2}} E(\Theta)\right] p(\Theta \mid \boldsymbol{W}, \boldsymbol{m}) p(\boldsymbol{W}) p(\boldsymbol{m}) \quad (14)$$

となる.この事後確率を計算することで、パラメータ Θ、なら びに潜在的時間構造を表す W、mを推定する.

式 (14) の事後分布は一般に解析的に取り扱える形ではないた め、レプリカ交換モンテカルロ法 (REMC法) を用いて、パラ メータのサンプリングを行った. [Geyer 91, Hukushima 96].

2.2 ピーク数と AR モデルの次数のモデル選択

スペクトルデータをフィッティングするガウス関数の個数 K, および AR モデルの次数 d は,モデルの構造を決める重要な パラメータである.モデル (K,d) が変化すると,パラメータ { θ_t }, W, m も変化する.そのため,データから (K,d) を客 観的に決定するモデル選択を行うことが必要である.

データ Y が与えられた元での,モデル (K,d) の周辺化事後 確率は,

$$p(K,d | \mathbf{Y}) = \iiint p(\Theta, \mathbf{W}, \mathbf{m}, K, d | \mathbf{Y}) d\Theta d\mathbf{W} d\mathbf{m} \quad (15)$$
$$\propto p(K,d) \iiint d\Theta d\mathbf{W} d\mathbf{m} \exp\left[-\frac{NT}{\sigma_o^2} E(\Theta)\right]$$
$$\times p(\Theta | \mathbf{W}, \mathbf{m}, K, d) p(\mathbf{W} | K, d) p(\mathbf{m} | K) \quad (16)$$

となる.式(16)中の積分の負の対数を取った自由エネルギー

$$F(K,d) = -\log \iiint d\Theta d\mathbf{W} d\mathbf{m} \exp\left[-\frac{NT}{\sigma_o^2} E(\Theta)\right] \\ \times p(\Theta | \mathbf{W}, \mathbf{m}, K, d) p(\mathbf{W} | K, d) p(\mathbf{m} | K)$$
(17)

を考える. モデルの事前分布 p(K,d) が一様分布であるとき,周 辺事後確率最大化は自由エネルギーの最小化と等価になる.本 研究では自由エネルギー最小化で (K,d) のモデル選択を行う. 式 (17) の多重積分は一般に困難であるため,REMC 法を 用いて,数値的に積分を行った [Nagata 12].

3. 結果

本研究では提案手法の有用性を検証するため、人工データ による推定を行った.本章ではその結果について述べる.

3.1 数值実験条件

真のモデルとして (K,d) = (2,1) を考える. AR モデルの パラメータとして, $(w_{1,1}, w_{2,1}) = (-0.35, 0.35)$, $(m_1, m_2) = (1.0, -1.0)$ とし,式 (2) に従い,100 ステップの $\{\mu_{k,t}\}$ を生成した. このとき, $\sigma_{AR} = 1.0$ としている.

図 2: 各ピーク中心 { $\mu_{k,t}$ } の推定結果と,真の値の比較.マー クが真の値を表し,実線が提案法による推定値を,点線が従来 法による推定値を表す.

	提案法	従来法
k=1	0.0259	1.9032
k=2	0.0059	0.0463

表 1: 真のピーク中心の時系列 $\{\hat{\mu}_{k,t}\}$ と, 推定されたピーク 中心の時系列 $\{\mu_{k,t}\}$ の間の二乗和誤差.

各時刻 t において、スペクトルデータ y_t を生成する. ガウス関数 ϕ_k のパラメータは $(a_1, a_2) = (1.0, 2.0), (\sigma_1, \sigma_2) = (0.816, 1.0)$ とした. ガウス関数に加算されるノイズの大きさ は $\sigma_o = 0.22$ としている. また、ガウス関数の入力は $-7.0 \leq x_i \leq 6.86$ の範囲で等間隔に N = 100 点用いた.

生成したデータを用いて、パラメータ推定ならびにモデル 選択を行う. ここで、各パラメータについて、事前分布はそ れぞれ $p(a_k) \in [0.00, 3.53], p(\sigma_k^{-2}) \in [0.10, 100], p(w_{k,\tau}) \in$ $[-0.50, 0.50], p(m_k) \in [-7.0, 6.86]$ の一様分布としている. σ_k に関しては、その二乗の逆数を推定するパラメータとする. また、モデル (K,d) は、ピーク数 K = 1,2,3, AR モデルの 次数 d = 0, 1, 2とし、9 通りのモデルを考え、それらのモデ ルは一様分布を事前分布として考える. パラメータをサンプ リングするにあたり、最初の 10000 モンテカルロステップは burn-in にし、50000 モンテカルロステップでサンプリングを し、パラメータ推定・モデル選択を行った.

3.2 数值実験結果

まず,真のモデルと同じ (K,d) = (2,1) の条件下でパラメー タの推定を行う.

図 2 は、ピーク中心 { $\mu_{k,t}$ } に関する推定結果である。2 つ のピークについてそれぞれ真の時系列データと従来手法、提案 手法を比較している。マークが真の値である。実線が提案手法 による推定値であり、点線が従来手法による推定値を表してい る、提案手法により、真の時系列が推定できていることが分か

図 3: REMC 法によりサンプリングされた各パラメータのヒス トグラム. 横軸が各パラメータ,縦軸が度数分布の対数プロッ トである. 実線がサンプリングされた分布,太点線が真の値, 点線が事後確率最大となるような推定値である (a)(b) がそれ ぞれのピークのガウス関数の強度, (c)(d) がそれぞれのピーク のガウス関数の分散の逆数である. (e)(f) がそれぞれ AR モデ ルの定数項に対応する. (g)(h) がそれぞれ AR モデルの係数 に対応する.

る. 真のピーク中心の時系列 $\hat{\mu}_{k,t}$ と, 推定されたピーク中心 の時系列の間の二乗和誤差 $E_k = (2T)^{-1} \sum_t |\hat{\mu}_{k,t} - \mu_{k,t}|^2$ を 表 1 に示している. 提案手法の時間構造を考慮してピーク中 心を推定する方が, 各時刻で独立にピーク中心を推定するより 良い性能であることが分かる.

図 3(a)-(d) は、ガウス関数の強度 $\{a_k\}$ と、精度 $\{\sigma_k^{-2}\}$ の 周辺事後分布を度数分布で表している。横軸が各パラメータの 値、縦軸が度数分布の対数プロットである。各図において、実 線がサンプリングされた分布、太点線が真の値、点線が事後確 率最大となるような推定値である。いずれのパラメータも、一 様な事前分布と比較して、真の値周辺で急峻にピークを持ち、 さらに、事後分布を最大にする MAP 解の値も真の値と一致 していることが分かる。提案手法を用いて、パラメータ推定を 精度よく推定できることが分かる。

図 3(e)–(h) は、潜在的動力学を表すパラメータ $\{w_{k,\tau}\}$ ならびに $\{m_k\}$ の周辺事後分布を度数分布で表している。各図において、実線がサンプリングされた分布、太点線が真の値、点線が事後確率最大となるような推定値である。横軸が各パラメータの値、縦軸が度数分布の対数プロットである。図 3(e)(f)

は、それぞれ定数項 m_1 , m_2 の結果を示している。事前分布 と比較して真の値周辺でピークを持ち、さらに、MAP 解も真 の値と良く一致していることが分かる。しかしながら、スペク トル分解のパラメータと $\{a_k\}$ や、 $\{\sigma_k\}$ と比較して、事後分 布が広がっており、推定精度にばらつきがあることが分かる。 図 3(g)(h) は、それぞれ係数 $w_{1,1}$, $w_{2,1}$ の結果を示している。 事前分布 $w_{k,\tau} \in [-0.5, 0.5]$ の一様分布と比較すると、真の値 周辺でサンプリングされているが、他のパラメータと比較する と、 $w_{1,1}$, $w_{2,1}$ の事後分布は推定精度にばらつきがあること が分かる。これは、 $w_{k,\tau}$ がより深い構造のパラメータである ためと考えられる。

これまでのパラメータ推定は,真のモデルである (K,d) = (2,1)を既知とした上で行ってきた.そこで,(K,d)をデータから客観的に決定することを考える.

表 2 に, REMC 法を元に自由エネルギー F(K, d)の式 (17) を数値的に計算した結果を示す. このとき,候補となるモデル は K = 1, 2, 3, d = 0, 1, 2の組み合わせで,9通りのモデル を考えた.モデル (K, d) = (2, 1)で自由エネルギー最小とな り,真のモデルを正しく選択できたことが分かる.また,表3 に自由エネルギーを元に計算した事後確率 $p(K, d \mid Y)$ の値を 示している.真のモデルの事後確率が 59.6% であり,他のモ デルと比較して高い確率であることが分かる.

以上の結果から,提案手法は時系列スペクトルデータのス ペクトル分解,潜在的動力学の推定,さらにモデル選択を正し く行えることが分かった.

4. 考察・結論

本研究では、時系列スペクトルデータを、時間構造を考慮し て解析するためのベイズ推論の枠組みを構築した.

従来,時系列スペクトル分解の解析は各時刻で独立にスペク トル分解を行い,時間構造は考慮されていなかった.本研究で は,特にピーク中心が時間的に変動する場合を考え,パラメー タに AR モデルから考えられる事前分布を導入し,時系列ス ペクトルデータから,スペクトル分解と時系列構造抽出を同時 に行う手法を提案した.さらに,提案手法の有用性を人工デー タを用いて検証し,各時刻で独立にスペクトル分解を行う場 合より,高い精度でピーク中心の時系列を推定できることを示 した.

さらに、フィッティングするピークの個数ならびに AR モデ ルの次数という、推定するパラメータの数を規定するモデルを データだけから客観的に決定する枠組みを、提案手法に関して 開発し、実際に人工データで推定し有効性を検証した.

実計測データへの適用を目指し、時系列構造の導入の仕方 を発展させることが今後の課題である。

謝辞

本研究の一部は文部科学省 科学研究費補助金新学術領域 研究 [課題番号 25120009(岡田)],基盤研究(C) [課題番号 25330283(永田)]の下で行われた。

参考文献

- [Akaike 69] Akaike, H.: Fitting autoregressive models for prediction, Annals of the institute of Statistical Mathematics, pp. 243–247 (1969)
- [Celotti 99] Celotti, A., Miller, J. C., and Sciama, D. W.: Astrophysical evidence for the existence of black holes,

	d = 0	d = 1	d = 2
K=1	11718.591465	11711.832820	11711.363701
K=2	5555.847529	5540.367995	5541.263794
K=3	5558.059545	5541.980823	5543.034303

表 2: ピーク数 K, AR 次数 d と自由エネルギー F(K,d) の 関係

	d = 0	d = 1	d = 2
K=1	0%	0%	0%
K=2	0%	59.6%	24.3%
K=3	0%	11.9%	4.1%

表 3: ピーク数 K, AR 次数 d と事後確率 $p(K, d \mid \mathbf{Y})$ の関係

Classical and Quantum Gravity, Vol. 16, No. 12A, pp. A3–A21 (1999)

- [Geyer 91] Geyer, C. J.: Markov chain Monte Carlo maximum likelihood, in *Proceedings of the 23rd Symposium* on the Interface, p. 156 (1991)
- [Hukushima 96] Hukushima, K. and Nemoto, K.: Exchange Monte Carlo method and application to spin glass simulations, *Journal of the Physical Society of Japan*, Vol. 65, No. 6, pp. 1604–1608 (1996)
- [Nagata 12] Nagata, K., Sugita, S., and Okada, M.: Bayesian spectral deconvolution with the exchange Monte Carlo method, *Neural Networks*, Vol. 28, pp. 82– 89 (2012)
- [Nugent-Glandorf 01] Nugent-Glandorf, L., Scheer, M., Samuels, D. a., Mulhisen, a. M., Grant, E. R., Yang, X., Bierbaum, V. M., and Leone, S. R.: Ultrafast timeresolved soft x-ray photoelectron spectroscopy of dissociating Br2., *Physical review letters*, Vol. 87, No. 19, p. 193002 (2001)