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Solving a multi-objective constraint optimization problem (MO-COP) typically consists in computing the set
of all Pareto optimal solutions, which is exponentially large in the general case. Besides the time complexity
concern, the other main drawback of this process is its lack of decisiveness, leading to thousands of solutions even
for problems with a simple structure. Taking our inspiration from the well-known vertex center problem in discrete
location theory, we present a procedure which, given a number k of desired solutions, returns k Pareto optimal
solutions which are well-distributed and representative of the Pareto front. Compared to previous approaches, we
show that our procedure exhibits a desirable behavior in the context of MO-COPs. We analyze the computational
complexity of the underlying computational problem and provide both exact and approximation procedures.

1. Introduction

We address the issue on multi-objective constraint opti-
mization problems (MO-COPs), which is the problem to
find assignments of variables to values which satisfy some
constraints and optimize several objectives simultaneously.
Typically, the notion of “optimality” for such assignments
is based on the notion of Pareto optimality, thus most of
standards algorithms addressing MO-COPs [10, 11, 7] solve
a given MO-COP by computing the whole set of Pareto op-
timal solutions. But this causes two problems: time com-
plexity and lack of decisiveness.
A recent approach for MO-COPs has been proposed to

address the decisiveness issue [13]. It consists in compu-
ting a restricted set of Pareto optimal solutions given some
preferences among the different objectives, expressed as a
weighted vector. However, expressing quantitative relative
importance between preferences may be cumbersome for
the end user, e.g., in a context of product configuration
[12, 6]. Indeed, not more than 7 alternatives can be pair-
wise compared by a user [5]. This calls for an appropriate
function which filters available alternatives. A class of filter-
ing functions called diversities has been introduced in [3, 1].
A diversity extracts a small subset of solutions which are
pairwise “distant.” In this paper, we argue that this notion
is not desirable for MO-COPs, in the sense that reasonable
trade-off solutions may be missed. Taking our inspiration
from facility location [8, 2, 4], we introduce a new filter-
ing function for MO-COPs called representativity. Unlike
diverse solutions, representative solutions provide implicit
information about the shape of the Pareto front.

2. Preliminaries on MO-COPs

We consider m elements o1, . . . , om called objectives.
A multi-objective constraint optimization problem (MO-
COP) is a tuple 〈X ,D, C〉, where: X = {x1, . . . , xn} is a set
of variables; D = {D1, . . . , Dn} is a multiset of non-empty
domains for the variables; C is a finite set of polyadic con-
straints (i.e., each Cj ∈ C is a mapping from some specific
set of domains Dj ⊆ D to N

m ∪ {∞}). Each constraint Cj

involves a set of variables Xj ⊆ X called the scope of Cj .
Let P be an MO-COP 〈X ,D, C〉. An assignment A of

P associates each variable xi ∈ X with a value αi ∈ Di.
An assignment A is forbidden by a constraint Cj ∈ C if
Cj(A(xi1 , . . . , xij )) = ∞, where {xi1 , . . . , xij} is the scope

of Cj . An assignment of P is a solution if no constraint from
C forbids it. Sols(P ) denotes the set of all solutions of P .
The cost vector of a solution S ∈ Sols(P ) is the m-vector

denoted by V (S) = (V 1(S), . . . , V m(S)) defined for each

k ∈ {1, . . . ,m} as V k(S) =
∑

Cj∈C
Cj(S(xi1 , . . . , xij )),

where {xi1 , . . . , xij} is the scope of Cj .

“Solving” an MO-COP P typically consists in providing
the Pareto optimal solutions from Sols(P ). Let �m be the
product ordering over N

m, i.e., ∀V1, V2 ∈ N
m, V1 �m V2

iff ∀k ∈ {1, . . . ,m}, V k
1 ≤ V k

2 . The preordering �Par over
Sols(P ), called the Pareto dominance relation, is defined

∀S,S′ ∈ Sols(P ) as S �Par S′ iff V (S) �m V (S′); we say

that S Pareto dominates S′. A Pareto optimal solution of
P is a solution S ∈ Sols(P ) which is not strictly Pareto do-

minated by any other solution S′. SPar(P ) denotes the set

of Pareto optimal solutions, and PF(P ) =
⋃

S∈SPar(P )
V (S)

is called the Pareto front.

Example 1. Consider the bi-objective MO-COP P⋆ =
〈X⋆,D⋆, C⋆〉 such that X⋆ = {x1, x2, x3}, Di = {a, b}
∀Di ∈ D⋆ and C⋆ = {C1, C2, C3} defined as follows:

(x1, x2) C1 (x2, x3) C2 (x1, x2, x3) C3

(a, a) (1, 5) (a, a) (0, 4) (b, b, a) ∞

(a, b) (2, 1) (a, b) (1, 3)
(b, a) (6, 0) (b, a) (1, 5)
(b, b) (3, 0) (b, b) (7, 1)

Here, SPar(P⋆) = Sols(P⋆) = {a, b}3 \ {b, b, a}. For ins-
tance V ((aaa)) = (1, 5)+(0, 4) = (1, 9). The cost vectors of
the rest of (Pareto optimal) solutions of P⋆ are as follows:
V ((aab)) = (2, 8); V ((aba)) = (3, 6); V ((abb)) = (9, 2);
V ((baa)) = (6, 4); V ((bab)) = (7, 3); V ((bbb)) = (10, 1).
The Pareto front of P⋆ can be seen in Figure 1.
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Figure 1: The Pareto front of P⋆ and results for exact and
approximation approaches for k = 2.

An MO-COP operator ⊕ associates with an MO-COP P
a subset of Pareto solutions from Sols(P ) [13]. Typically,
the “quality” of a solution is evaluated through its cost
vector only, thus we focus on operators ⊕ which satisfy
S, S′ ∈ ⊕(P ) ∧ S 6= S′ =⇒ V (S) 6= V (S′).

3. Representative Solutions

It can be easily seen that in general, the size of the Pareto
front is exponential in the size of the problem: consider a
simple bi-objective problem P , i.e., m = 2 with n binary
variables (i.e., for instance each Di = {a, b}) and n unary
constraints Cj of scope {xj} defined as Cj(a) = (0, 2m) and
Cj(b) = (2m, 0), then one can easily verify that all 2n assign-
ments are Pareto optimal solutions of P , thus |⊕(P )| = 2n.
In Example 1, all solutions of P⋆ are Pareto optimal. There-
fore, providing all Pareto optimal solutions implies a lack of
decisiveness. In product configuration [12, 6] where a user
(e.g., a customer) is in charge of selecting her preferred
choice among the given alternatives, not more than 7 op-
tions can be rationally handled by an end-user customer [5].
We thus introduce a general class of “filtering” MO-COP
operators, which given an integer k associate with every
MO-COP P a subset of its Pareto optimal solutions such

that |⊕k (P )| = k. These operators can be characterized by
a filtering function Γ associating a set of assignments with

a number to be optimized∗1:

Definition 1 (Filtering MO-COP operator). Let k be an
integer and Γ be a filtering function. The 〈Γ, k〉-filtering

MO-COP operator ⊕k
Γ, is defined as

⊕k
Γ(P ) = γ(argmin{Γ(S) | S ⊆ SPar(P ), |S| = k}),

where γ is any choice function.

A class of filtering functions, called diversities, has been
introduced in the framework of Constraint Satisfaction Pro-
blems (CSPs) [3] and logic programs [1]. A diversity is
characterized by a distance δ between assignments and an
aggregation function f (i.e., a function from R × · · · × R

to R). Without loss of generality, we consider the standard
distance δ = δ1, i.e., the L1-norm defined for all V1, V2 ∈ R

m

as δ1(V1, V2) =
∑m

k=1
|V k

1 − V k
2 |.

∗1 The above definition is given in the case where Γ is to be
minimized. The maximization counterpart is defined similarly.

Definition 2 (Diversity [3]). Given an aggregation func-

tion f , the diversity ∆f is the filtering function defined for
every set S ⊆ SPar(P ) as

∆f (S) = f{δ1(V (S), V (S′)) | S, S′ ∈ S}.

Note that a diversity is a function to be maximized.

We claim here that a diversity ∆f is not be appropriate
for MO-COPs. First, the aggregation function f is arbi-
trarily chosen, e.g., the standard max and summation func-
tions [3]. But the consequence of such a choice for f is un-
clear; obviously enough, different aggregation functions in-
duce different filtering functions. Second, a diversity-based
MO-COP operator is not “representative” of the Pareto
front; indeed, it can be seen from Definition 2 that a di-
versity associates with a subset S of Pareto optimal solu-
tions a value which is independent from the shape of the
Pareto front. Third, such operators can output “extreme”
solutions, i.e., which do not provide a reasonable trade-off
among the objectives:

Example 1 (continued). For any aggregation function

f , we get that V (⊕2
∆f (P⋆)) = {(10, 1), (1, 9)}. One can see

from Figure 1 that these vectors are the most “unbalanced”
ones from the Pareto front, and that whichever the vectors
lying “between” these two, the result remains unchanged.

Such undesirable behavior also occurs for instances with
a higher number of objectives. As a concrete example, con-
sider the case where the Pareto front represents the out-
comes of Pareto optimal second-hand cars available for sale,
where the two objectives to be minimized respectively re-
present the price and the age of a car. Without any prior
knowledge of the possible alternatives a customer may ask
for two options. Any diversity-based filtering MO-COP

operator ⊗2
∆f will recommend only the newest and the ol-

dest available cars, though better trade-offs are available.
We introduce a more parsimonious filtering function

which is directly inspired from the well-known discrete p-
center problem in discrete location theory [8, 2, 4]. This
problem consists of locating p facilities in a network and
assigning clients to them so as to minimize the maximum
distance between any client and the facility she is assigned
to. We adapt the notion to MO-COPs:

Definition 3 (Representativity). The representativity Ω
is the filtering function defined for every S ⊆ SPar(P ) as

Ω(S) = max
S∈SPar(P )

min
S′∈S

δ1(V (S), V (S′)).

Ω(S) is called the radius of S.

A representativity is a function to be minimized. Note
that compared to a diversity, a representability does not
depend only on a given a set S of Pareto optimal solutions,
but also on the structure of the Pareto front:

Example 1 (continued). We have V (⊕2
Ω(P⋆)) =

{(7, 3), (2, 8)} or V (⊕2
Ω(P⋆)) = {(9, 2), (2, 8)} (only the for-

mer case is depicted in Figure 1). In both cases, the radius
is equal to 5.

It can be seen that a representativity-based MO-COP
operator offers better trade-offs than a diversity-based one.
No Pareto solution is left apart: intuitively, for each one of
them there is a solution among the proposed ones which is
not “too far” from it.
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4. Computational Complexity of ⊕k

Ω

We assume that the reader is familiar with the comple-
xity class NP (see [9] for more details). Higher complexity

classes are defined using oracles. In particular, ΣP
2 = NP

NP

corresponds to the class of decision problems that are solved
in non-deterministic polynomial time by deterministic Tur-
ing machines using an oracle for NP in polynomial time.
We investigate the computational complexity of two de-

cision problems inherent in our representativity-based MO-

COP operator ⊕k
Ω. We assume that k is bounded by a

polynomial in the size of the input [3, 1]. The first pro-
blem DP1 considers that the Pareto front is given in input
(for instance, when it is computed as a preprocessing). The
second problem DP2 does not require any prior processing
step on the input MO-COP:

Definition 4 (DP1).

• Input: An MO-COP P , its Pareto front PF(P ) and
two integers α, k.

• Question: Does there exist S ⊆ SPar(P ) such that
|S| = k and Ω(S) ≤ α?

Definition 5 (DP2).

• Input: An MO-COP P and two integers α, k.

• Question: Does there exist S ⊆ SPar(P ) such that
|S| = k and Ω(S) ≤ α?

Proposition 1. DP1 is NP-complete.

Without stating it formally, we claim that the corre-
sponding diversity problem [3] in the case where the Pareto
front is given in input, is also NP-hard, even for aggregation
functions f computable in polynomial time. Thus for DP1,
considering a representativity measure instead of a diver-
sity does not result in a complexity shift. This does hold
anymore for our second problem: DP2 lies in the second
level of the polynomial hierarchy, whereas the counterpart
diversity problem is NP-complete [3]:

Proposition 2. DP2 is Σ
P

2 -complete. Σ
P

2 -hardness holds
even when k = 1.

Let us provide a brief description of a procedure for com-

puting ⊕k
Γ(P ), i.e., the optimization problem corresponding

to DP2. This so-called “exact procedure” consists in three
phases. We first use any algorithm to compute the Pareto
front [10, 11, 7]; this can be made for instance using a stan-
dard branch-and-bound technique. Second, we randomly
generate a k-subset S of SPar(P ) and define αup to be the
radius of S , i.e., αup = Ω(S). Third, we adapt an efficient
encoding of the vertex p-center problem proposed in [4] into
our MO-COP framework. Such an encoding is parameter-
ized by an integer α (a specific radius) and serves as an
NP-oracle the decision problem DP1. The result with the

minimum radius αmin, i.e., ⊕
k
Ω(P ), is found by calling the

oracle iteratively: we adjust the radius α at each call using
a dichotomic search between 0 (the utopic value) and αup,
which serves as an initial upper bound.

5. Approximation Operator ⊕
k

lex

Despite the ΣP
2 -hardness of DP2, we introduce in this

section an MO-COP operator approximating ⊕k
Ω (in the

sense of the associated radius) which can be computed much

more efficiently, especially for a high number of objectives
where the exact approach does not work anymore. This ap-

proximation operator, denoted ⊕k
lex, intuitively “targets” k

specific areas of the Pareto front without actually compu-
ting it explicitely. The notion of normalized weighted vector
(“weight vector” for short) [14] is at the core of the idea:

it is an m-vector ω = (ω1, . . . , ωm) such that ω ∈]0, 1]m

and
∑m

k=1
ωk = 1. The set Wm denotes the set of all m-

weight vectors. We take advantage of a direct adaptation of
our representativity measure (cf. Definition 3) to weighted
vectors, defined as follows:

Definition 6 (Wm-representativity). The Wm-

representativity ΩWm is the mapping from 2Wm to
R+ defined for every set of m-weight vectors W ′ ⊆ Wm as

ΩWm (W ′) = max
ω∈Wm

min
ω′∈W′

δ1(ω, ω
′).

The inducedWm-representativity-based filtering function
is given as follows:

Definition 7 (Weight vector filtering). Given two integers

k,m, the weight vector filtering ⊙k
m is defined as

⊙k
m = γ(argmin{ΩWm (W ′) | W ′ ⊂ Wm, |W ′| = k}),

where γ is any choice function.

Note that the result of a weight vector filtering is com-
pletely characterized by k and m, i.e., it is independent

from any MO-COP instance. As a consequence ⊙k
m can be

assumed to be computed as a preprocessing step.

Example 1 (continued). Consider again the bi-objective
MO-COP P⋆, we have m = 2. Let k = 2. We have that

⊙2
2 = {ω1, ω2}, with ω1 = (0.25, 0.75), ω2 = (0.75, 0.25).

Figure 1 graphically depicts two dashed lines associated res-

pectively with ω1 and ω2, where for each ωi ∈ {ω1, ω2}, the

line associated with ωi is the set {(V1, V2) | ω
i
1.V1 = ωi

2.V2}.

The MO-COP operator ⊕k
lex we are going to introduce

uses the set ⊙k
m. Given an m-vector V , V> denotes the

vector composed of each element of V rearranged in a non-
decreasing order. Additionally, given two m-vectors U, V ,
U.V denotes the vector Z defined for each i ∈ {1, . . . ,m}

as Zi = U i.V i. Given an m-weight vector ω, let �lex
ω

be the total preordering over Sols(P ) defined as follows.

First, the strict part of �lex
ω is defined for all solutions

S, S′ ∈ Sols(P ) as S ≺lex
ω S′ iff (V (S).ω)> lexically pre-

cedes (V (S′).ω)>, i.e., iff there is i ∈ {1, . . . ,m} such that

(V (S).ω)i> < (V (S′).ω)i> and if i > 1, then for every

j ∈ {1, . . . , i − 1}, (V (S).ω)j> = (V (S′).ω)j>. Then �lex
ω

is defined for all solutions S, S′ ∈ Sols(P ) as S �lex
ω S′ iff

V (S.ω)> = V (S′.ω)> or S ≺lex
ω S′. For instance, if R(S) =

(2, 6, 3, 5), R(S′) = (6, 1, 5, 4) and ω = (0.1, 0.5, 0.2, 0.2),

then S′ ≺lex
ω S since the vector (0.1 ∗ 2, 0.5 ∗ 6, 0.2 ∗

3, 0.2 ∗ 5)> = (1/5, 3, 3/5, 1)> = (3, 1, 3/5, 1/5) lexically
precedes the vector (0.1 ∗ 6, 0.5 ∗ 1, 0.2 ∗ 5, 0.2 ∗ 5)> =
(3/10, 1/2, 1, 4/5)> = (1, 4/5, 1/2, 3/10).

To define our MO-COP operator ⊕k
lex, we take advantage

of the so-called ω-weighted egalitarian operator ⊕ω recently
introduced in [13]:

Definition 8 (Weighted egalitarian operators). Let ω be a
weight vector. The ω-weighted egalitarian operator ⊕ω is
defined for every MO-COP P as

⊕ω(P ) = min(Sols(P ),�lex
ω ).
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These operators exhibits a number of interesting proper-
ties: (i) they return a subset of Pareto optimal solutions;
(ii) they have a high decisiveness power: it has been shown
experimentally that only 1 solution is returned in most cases
[13]; (iii) any Pareto optimal solution can be reached by ad-
justing the weight vector (even for non-convex instances);
(iv) graphically speaking, the resulting Pareto optimal solu-
tion is the “closest” to some utopia point which is located on
the line specified by ω w.r.t. some specific class of weighted
norms. We are ready to define our approximation operator

⊕k
lex, which is characterized by⊙k

m and weighted egalitarian
operators ⊕ω:

Definition 9 (⊕k
lex). Given an integer k, the MO-COP

operator ⊕k
lex is defined as

⊕k
lex(P ) = {γ(⊕ωi(P ) | ωi ∈ ⊙k

m},

where γ is any choice function.

Example 1 (continued). For ω1 = (0.25, 0.75), we have

V (⊕lex
ω1

(P⋆)) = {(9, 2)} (cf. Figure 1). Intuitively, the

vector ω1.V (S) = (0.25 ∗ 9, 0.75 ∗ 2) = (2.25, 1.5) is the
most “balanced” one among PF(P ). Similarly, for ω2 =

(0.75, 0.25), we have V (⊕lex
ω2

(P⋆)) = {(2, 8)}. Therefore, we

get that V (⊕k
lex) = {(9, 2), (2, 8)}.

6. Empirical Results

We empirically evaluated the CPU time of computing

both ⊕k
Ω and ⊕k

lex on MO-COP instances with 15 binary
variables for k = 7. We carried out all experiments on one
core running at 2.3GHz with 4GB RAM. We considered
MO-COP instances 〈X ,D, C〉 randomly generated as com-

plete constraint graphs such that each constraint Cij ∈ C

associates a vector V from N
m, with each V k being a ran-

dom value ranging over {0, . . . , 100}.

Table 1 gives the results of computing both ⊕7
Ω and ⊕7

lex,
varying the number of objectives m from 2 to 8. For eachm,
all values represent an average on 100 MO-COPs instances,
and we give the CPU time and the radius of the associated
set of 7 Pareto optimal solutions. We fixed a time out of
3,600 seconds for computing the Pareto front (i.e., the first
phase of the exact procedure) and a time out of 50 seconds
for each call of the NP-oracle used to find an optimal set
S of 7 Pareto solutions. For example, MO-COP instances
with m = 4 had (in average) a Pareto front of size 388;
computing the Pareto front (first phase of the exact proce-

dure for ⊕7
Ω) took 4.70 seconds, while the phase searching

for an optimal set S of 7 Pareto solutions took 190 seconds,
thus 194.70 seconds in total; the radius of the average S
was 918; and it was proved that no set of 7 Pareto solutions
exists with a radius of 896. In comparison, for the same

set of instances computing S = ⊕7
lex(P ) took 3.30 seconds

and the radius of S was 1835 in average. As to ⊕lex, com-

puting the set of weight vectors ⊙7
m was made for each m

by discretizing the set Ω7 with a precision of two digits per

vector component. Since ⊙7
m is independent from a specific

MO-COP, it was computed offline as an upstream step.
Table 1 shows the impact of the increasing number of ob-

jectives on the computational time of the exact procedure

for ⊕7
Ω(P ): for MO-COPs with 15 variables the time out is

reached from 4 objectives and becomes sub-optimal. From
7 objectives and above the exact procedure becomes infea-
sible as it requires to solve iteratively to solve an NP-hard

Table 1: CPU time and value of radius obtained from MO-
COPs with n = 15 and p = 7.

m |PF(P )|
CPU time (in sec.) radius

⊕7

Ω
(P ) (PF / opt) ⊕7

lex(P ) ⊕7

Ω
(P ) ⊕7

lex(P )
2 16 2.34 / 0.26 2.80 156 (157) 457
3 92 2.97 / 0.62 3.01 494 (493) 975
4 388 4.70 / 190 3.30 918 (896) 1835
5 1346 11.59 / 583 3.72 1401 (1162) 2705
6 3135 28.79 / 681 4.04 1803 (1396) 3208
7 5278 73.38 / time out 4.34 time out 4058
8 8044 139.22 / time out 4.65 time out 4064

problem on an exponential input with thousands of Pareto

optimal solutions. In comparison, computing ⊕7
lex(P ) is

much faster and offers an acceptable alternative for pro-
blems with a high number of objectives.

7. Summary

We adapted a well-known concept in discrete location
theory to multi-objective constraint optimization problems
(MO-COPs). We characterized a well-behaved, restricted
subset of Pareto optimal solutions from any MO-COP. The
notion is of interest in a decision-making context where no
a priori preferences among the different objectives may be
available. We investigated the computational complexity of
some associated decision problems and provided exact and
approximation procedures to compute such sets.
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