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How to schedule a limited number of nurses in hospital wards staffed 24 hours a day is important issue for the
satisfactory patient care and potentially improve nurse retention. Nurse Scheduling Problem (NSP) is a combina-
torial optimization problem, in which a set of nurses must be assigned into a limited set of working slots, subject to
a given set of hard and soft constraints. It is natural to consider the scheduled nurse’s unexpected absences. Nurse
Rerostering Problme (NRP) is a dynamic NSP where the aim is to reschedule the current roster so that the number
of changes of assignments between current and modified schedules is minimized. In this paper, the focus is laid on
NRP with multiple criteria and the egalitarianism among nurses in a modified schedule. A formal framework for
Multi-Objective NRP (MO-NRP) is provided and a novel solution criterion (egalitarianism) for MO-NRP is defined.

1. Introduction

Nurse Scheduling Problem (NSP) [1, 2, 13, 14] is one of

the representative application problems in OR and AI. This

problem can be represented as an Weighted CSP [1] where

the aim is to find an assignment that satisfies all hard con-

straints and minimizes the sum of all violated costs of soft

constraints. In order to provide satisfactory patient care

and potentially improve nurse retention, creating a good

schedule for nurses is important issue. However, in general,

since making the schedule which satisfies all constraints is

intractable, the scheduler spends a lot of time to find an ac-

ceptable schedule for both nurses and the hospital. In NSP,

various complete and incomplete approaches have been in-

troduced to generate better nurse schedules [2, 3, 13, 14].

Nurse Rerostering Problme (NRP) [6, 9, 11, 16] is a dy-

namic NSP where the aim is to reschedule the current roster

so that the number of changes of assignments (shift works)

between current and modified schedules is minimized. It

is natural to consider the scheduled nurse’s unexpected ab-

sences, e.g., illness, accident and injury. When an absence

is announced, the scheduler must find a nurse who can fill

the vacancy of the absentee and the current schedule must

be rebuilt as soon as possible. Most previous works for NRP

focus on the stability of a schedule, i.e., the new schedule

should be similar to the current one as much as possible.

The egalitarianism is an expected property of an NRP.

Even if the number of changes of all assignments in a mod-

ified schedule is small (and it is also optimal, i.e., all hard

constraints are satisfied and the sum of the violation costs

of soft constraints is minimized), it can happen that one

needs to change her assignments a lot, while others not.

In this paper, the focus is laid on NRP with multiple

criteria and the egalitarianism among nurses. A novel

framework for Multi-Objective Nurse Rerostering Problem

(MO-NRP) is introduced which is the extension of an NRP.
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More specifically, MO-NRP is modeled by using the frame-

work of Multi-Objective Weighted CSP (MO-WCSP) [10]

which is the extension of Weighted CSP [5] where the aim

is to find an assignment that satisfies all hard constraints

and minimizes all objectives simultaneously. Solving an

MO-NRP is to find Pareto optimal (i.e. trade-off) solutions

among “optimality” and “stability”. Also, a novel solution

criterion called egalitarian solution for MO-NRP is defined.

NRP is an application problem of a Minimal Perturba-

tion Problem (MPP) [4, 12] which is a problem for Dy-

namic CSP where the aim is to find a valid solution that

minimizes a given distance function. Usually, the distance

function measures the number of changing variables. Mini-

mizing perturbations then results in minimizing the number

of changes in the assignment. Solving an MPP is finding

a stable solution. Compared to MPP, this work focuses on

multiple criteria, i.e., optimality and stability of a schedule.

Hattori et al. [15] formalized a dynamic NSP by using

dynamic weighted MaxCSP which can effectively deal with

dynamic changes to a problem. They introduced provisional

constraints which allow variables to keep the same values

so that one can obtain a stable solution that is close to

previous ones. This paper works on MO-NRP and focuses

on the egalitarianism among nurses, while they worked on

the stability in dynamic (mono-objective) NSP (i.e. NRP).

Pato et al. [11] worked on bi-objective genetic heuristic

for NRP which considers to minimize the sum of the changes

of assignments and the number of constraint violations like

classical NSP. Also, Burke et al. [3] investigated multiple

criteria in NSP. Compared to these works, this paper fo-

cuses on the egalitarianism among nurses of a schedule.

The rest of the paper is organized as follows. In the next

section, the formalizations of NRP and MO-WCSP are pro-

vided. Afterwards, our framework for MO-WCSP based

MO-NRP is presented and the formal definition of a egal-

itarian solution for an MO-NRP is provided. Finally, we

conclude this paper and give some future works.
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2. Preliminaries

The formalizations of a Nurse Rerostering Problem and

a Multi-Objective Weighted CSP are briefly described.

Nurse Rerostering Problem
Nurse Rerostering Problem (NRP) [6, 9, 11, 16] is a com-

binatorial optimization problem, in which a set of nurses

must be assigned into a limited set of working slots, sub-

ject to a given set of hard and soft constraints. In general,

the constraints are dependent on the requirements of both

nurses and hospitals. The following is the representative

hard and soft constraints, which are used in previous works.

HC 1 : Prohibited working patterns must be avoided (e.g.

7 consecutive works and 3 consecutive night shifts).

HC 2 : There exists the required number of nurses for each

shift in a day, e.g., at least 3 nurses must be assigned

to the morning shift and 2 for evening and night shifts.

HC 3 : The number of day-offs of each nurse must be same

before and after the modification.

HC 4 : Each newcomer should be assigned together with

skillful nurse (i.e., head or highly experienced nurse).

HC 5 : Nurses must rest at least 16 hours between two

consecutive shift works, e.g., a morning shift (8:00-

16:00) and an evening shift (16:00-24:00) should not

be assigned after a night shift (0:00-8:00).

S1 : For each shift work, the required skill level of assigned

nurses should be satisfied.

S2 : Day-offs of each nurse in a current schedule should

not be changed in a modified schedule.

S4 : Requests of nurses (e.g. preferred working pattern

and specially day-off request) should be satisfied as

much as possible.

Objective : Minimize the number of changes of shift

works between current and modified schedules.

Multi-Objective Weighted CSP
Multi-Objective Weighted CSP (MO-WCSP) [10] is the

extension of Weighted CSP [5] where the aim is to find an

assignment that satisfies all hard constraints and minimizes

the sum of all violated costs of soft constraints. Let k be

the number of objectives. MO-WCSP is defined by a tuple

MO-WCSP = ⟨X,D,C, S,Φ⟩, where X = {x1, x2, ..., xn}
is a set of variables, D = {d1, d2, ..., dm} is a set of do-

mains, C = {C1, C2, ..., Ck} is a set of hard and soft con-

straints, S = {S1, S2, ..., Sk} is a set of valuation structures,

Φ = {ϕ1, ϕ2, ..., ϕk} is a set of multi-objective functions. For

each objective i (1 ≤ i ≤ k), Ci = Ci
h ∪ Ci

s is the union of

hard and soft constraints, where Ci
h is a set of hard con-

straints and Ci
s is a set of soft constraints, Si = (Ei,

∑
, <)

is the valuation structure, where Ei = N ∪ {∞},
∑

is the

standard sum over N and all elements of E are ordered by

the operator <, and ϕi : Ci → Ei is a cost function. Let

x1 x2 cost

0 0 (∞,0)

0 1 (0,1)

1 0 (∞,1)

1 1 (∞,0)

x1 x3 cost

0 0 (3,1)

0 1 (0,3)

1 0 (3,2)

1 1 (2,1)

x2 x3 cost

0 0 (1,3)

0 1 (2,∞)

1 0 (0,4)

1 1 (4,1)

図 1: Example of bi-objective WCSP.

A be an assignment to all variables. For an objective i, the

valuation of A for constraint c ∈ Ci is defined as:

ϕi(A, c) =


0 c ∈ Ci

h is satisfied by A,

∞ c ∈ Ci
h is violated by A,

ϕi(A, c) c ∈ Ci
s.

and the overall valuation of A is given by

ϕi(A) =
∑
c∈Ci

ϕi(A, c).

Then, the sum of the violation costs of all cost functions

for k objectives is defined by a cost vector, denoted Φ(A)

= (ϕ1(A), ϕ2(A), ..., ϕk(A)). Finding an assignment that

minimizes all objective functions simultaneously is ideal.

However, in general, since trade-offs exist among objectives,

there does not exist such an ideal assignment. Therefore,

the “optimal” solution of an MO-WCSP is characterized by

using the concept of Pareto optimality. MO-WCSP can be

represented using a constraint graph, in which a node cor-

responds to a variable and an edge represents a constraint.

Definition 1 (Dominance). For two cost vectors Φ(A) and

Φ(A′), we call that Φ(A) dominates Φ(A′), denoted by

Φ(A) ≺ Φ(A′), iff Φ(A) is partially less than Φ(A′), i.e., it

holds (i) ϕi(A) ≤ ϕi(A′) for all objectives i, and (ii) there

exists at least one objective i′, such that ϕi′(A) < ϕi′(A′).

Definition 2 (Pareto optimal solution). An assignment A

is said to be the Pareto optimal solution, iff there does not

exist another assignment A′, such that Φ(A′) ≺ Φ(A).

Definition 3 (Pareto Front). A set of cost vectors obtained

by Pareto optimal solutions is said to be the Pareto front.

Solving an MO-WCSP is to find the Pareto front.

Example 1 (MO-WCSP). Consider the complete graph

of a bi-objective WCSP with three variables x1, x2 and x3.

Figure 1 shows the cost vectors among three variables. Each

variable takes its value from {0, 1}. Each table show the

cost vector for each constraint. For example, for the con-

straint between x1 and x3, in case x1 and x3 take same value

0, the obtained cost vector is (3, 1), i.e., cost 3 for objective

1 and cost 1 for objective 2. The cost ∞ means that it

violates a hard constraint. The Pareto optimal solutions of

this problem are {{(x1, 0), (x2, 1), (x3, 0)}, {(x1, 0), (x2, 1),

(x3, 1)}} and the obtained Pareto front is {(3, 6), (4, 5)}.
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表 1: Example of MScurrent for a week of 7 nurses.

Nurse（Lebel） M T W T F S S

n1 (l1) o m m m e e e

n2 (l2) e e n o m m m

n3 (l3) m m m e e n o

n4 (l3) m e e n o m n

n5 (l4) m m e e n o m

n6 (l4) n n o m m e e

n7 (l5) e o m m m m m

3. Multi-Objective NRP

In order to consider the minimizing the number of (i)

constraint violations (optimality) and (ii) the changes of

assignments (stability) simultaneously in an NRP, a Multi-

Objective Nurse Rerostering Problem (MO-NRP) is formal-

ized by using the framework of an MO-WCSP. Moreover,

the egalitarian solution for an MO-NRP is defined.

Let us describe the following basic terms for MO-NRP.

• N = {1, ..., n} is a set of ID-numbers for nurses.

• M = {1, ...,m} is a set of days in a scheduling period.

• X = {x11, ..., xnm} is a set of variables.

• W = {o,m, e, n} is a set of shift works, where o =

{day-off}, m = {morning} (8:00-16:00), e = {evening}
(16:00-24:00) and n = {night} (0:00-8:00).

• L = {l1, ..., l5} is a set of skill levels of nurses where

l1 = {head nurse}, l2 = {highly experienced}, l3 =

{experienced}, l4 = {few years} and l5 = {newcomer}.

• αl : N → L is a mapping from N to L which provides

the skill level of a nurse, e.g., for a head nurse i ∈ N ,

her skill level can be obtained by αl(i) = l1.

A (n ×m)-table is said to be a master schedule and is de-

note as MScurrent for the current schedule and MSmod for

the modified schedule after unexpected absences of a nurse.

MScurrent is a solution of NSP and MSmod is that of NRP.

Definition 4 (Stability). For MScurrent and MSmod, each

wij ∈ W in MScurrent and each w′
ij ∈ W ′ in MSmod, and

a non-negative integer r, MSmod is said to be r-stable, iff

the sum of the changes of assignments is bounded by r, i.e.,

∑
i,j

g(wij , w
′
ij) ≤ r, where g(wij , w

′
ij) =

{
0 wij = w′

ij ,

1 otherwise.

Example 2. Consider a muster schedule for a week of

7 nurses. Table 1 represents the current master schedule

MScurrent which satisfies all hard constraints (HC 1 - HC

5 in section 2). Assume that nurse n5 has an unexpected

absence on Monday and cannot work her shift work, i.e.,

morning shift m. Table 2 shows a modified muster sched-

ule MSmod. The morning shift of n5 on Monday has been

表 2: Example of a modified schedule MSmod. Nurse n5

had an unexpected absence on Monday (denoted by ⧸).

Red fonts show the modified shift works.

Nurse（Lebel） M T W T F S S

n1 (l1) m m m m n o m

n2 (l2) e e n o m m m

n3 (l3) m m m e e n o

n4 (l3) m e e n o m n

n5 (l4) ⧸ m e e e e e

n6 (l4) n n o m m e e

n7 (l5) e o m m m m m

changed from m to absence in MSmod (denoted by ⧸).

From HC 2 (i.e. at least 3 nurses must be assigned to the

morning shift and 2 for evening and night shifts), nurse n1

works the shift work m instead of n5. In order to satisfy

all hard constraints (from HC 1 to HC 5), nurse n1 changes

her shift works (i.e. evening shifts e) on Friday, Saturday

and Sunday in MScurrent to night shift n on Friday, day-off

o on Saturday and morning shift m on Sunday in MSmod.

Also, nurse n5 changes her night shift n on Friday, day-off o

on Saturday and morning shift m on Sunday in MScurrent

to evening shifts e on these three days in MSmod. Since

the number of changes is 8 (including the absence of n5 on

Monday), the modified schedule MSmod is r = 8-stable.

In the following, the framework for MO-NRP is defined.

Definition 5 (MO-NRP). An MO-NRP is a tuple MO-NRP

= ⟨X, W , L, C, S, MScurrent, Φ⟩, where X is a set of

variables, W is a set of domains, L is a set of skill levels,

C and S are same as MO-WCSP, MScurrent is the cur-

rent schedule, Φ = {ϕopt, ϕstable} is a set of cost functions

where ϕopt is a cost function for optimality and ϕstable is

that for stability. For a value assignment A to all vari-

ables, the sum of the violation costs of all cost functions

and the sum of the changes of assignments is given by a

vector Φ(A) = (ϕopt(A), ϕstable(A)). Solving an MO-NRP

is to find Pareto optimal solutions so that (i) all hard con-

straints are satisfied, (ii) the sum of the violation costs and

(iii) the sum of the changes of assignments are minimized.

In previous works on MO-NRP, the aim is to find an as-

signment so that the number of the changes of assignments

between current and modified schedules is minimized, i.e.,

stability. On the other hand, in MO-NRP, bi-objectives (i.e.

optimality and stability) are considered simultaneously.

In MO-NRP, one can easily define several objective func-

tions (i.e. ϕopt1 , ϕopt2 ,...,ϕoptp) instead of only one objec-

tive function ϕopt. For the simplicity, this paper defines

ϕopt for optimality like classic NSP. Such simplification can

be done by aggregating all objective functions called AOF

technique [7] (or in other words, scalarization method).

Definition 6 (s-vector). Let si =
∑

j g(wij , w
′
ij) be the

number of the changes of assignments for a nurse i. The

number of the changes of assignments for all nurses is said

to be a s-vector w.r.t. MS and denoted by vs = (s1, ..., sn).
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表 3: Example of a modified schedule MS′
mod which is more

egalitarian than MSmod.

Nurse（Lebel） M T W T F S S

n1 (l1) m m m m e o e

n2 (l2) e e n o m m m

n3 (l3) m m m e n n o

n4 (l3) m e e n o m m

n5 (l4) ⧸ m e e e e n

n6 (l4) n n o m m e e

n7 (l5) e o m m m m m

Definition 7 (Equivalence). For two s-vectors vs =

(s1, ..., sn) and vs′ = (s′1, ..., s
′
n) w.r.t. MSmod, vs and vs′

are said to be equivalent, iff it holds
∑n

i=0 si =
∑n

i=0 s
′
i.

Let Vs be a set of equivalent s-vectors w.r.t. MSmod

and ⪯lex be the total preoder over Vs defined ∀vs, vs′ ∈ Vs

as vs ⪯lex vs′ if and only if lexically reordered vs pre-

cedes lexically reordered vs′ . Let vs = (4, 1, 3, 2, 2) and

vs′ = (4, 0, 3, 2, 3) be two vectors. The corresponding re-

ordered vectors are vs = (4, 3, 2, 2, 1) and vs′ = (4, 3, 3, 2, 0).

Compare the 1st components of vs and vs′ . In case they are

same, the 2nd components are compared. Continue to com-

pare until one of two components is smaller than the an-

other one. In this example, for the 3rd components, since 2

of vs is smaller than 3 of v′s, vs is lexically smaller than v′s.

Definition 8 (Egalitarianism). For an MO-NRP, a MSmod

and a s-vector w.r.t. MSmod, vs is said to be a egalitarian

solution of MSmod, iff there does not exist another equiva-

lent s-vector vs′ w.r.t. MSmod, such that vs′ ⪯lex vs.

Example 3. Consider the MSmod in table 2. The s-vector

w.r.t. MSmod is vs = (4, 0, 0, 0, 4, 0, 0). Table 3 shows the

alternative muster schedule MS′
mod. Since the number of

the changes of assignments is 8, MS′
mod is r = 8-stable

and the s-vector w.r.t. MS′
mod is vs′ = (2, 0, 1, 1, 4, 0, 0),

i.e., vs and vs′ are equivalent. The lexically reordered vec-

tors of vs and vs′ are vs = (4, 4, 0, 0, 0, 0, 0) and vs′ =

(4, 2, 1, 1, 0, 0, 0). Thus, vs′ is more egalitarian than vs
(vs′ ⪯ vs). Compared to MSmod, five nurses (i.e. n1, n3, n4

and n5) share the changes in MS′
mod, while only two nurses

(i.e. n1 and n5) changes their assignments in MSmod.

4. Conclusion

NRP is a dynamic NSP where the aim is to reschedule the

current roster so that the number of the changes of assign-

ments between current and modified schedules is minimized.

Most previous works on NRP focused on the stability, i.e.,

the new schedule should be similar to the current one as

much as possible. The contribution of this paper is twofold:

• A formal framework of Multi-Objective Nurse Reros-

tering Problem (MO-NRP) is defined. The aim of an

MO-NRP is to find the trade-off solutions among “op-

timality” and “stability” of the modified schedule.

• The “egalitarianism” among nurses has been first stud-

ied in MO-NRP.

As a perspective for further research, we intend to apply

our approach to some real problems and analyze the trade-

off solutions for an MO-NRP. Furthermore, we will develop

an efficient algorithm for solving an MO-NRP. Also, we are

interested in time tabling problems, e.g., educational, sport,

transportation and entertainment time tables [8].
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