
Simple Method to Diversify Search Space in SAT Problems

Moon seongsoo Inaba Mary

Graduate School of Information Science and Technology, The University of Tokyo

Diversification of search space has contributed to the fast progress in SAT solving, and appears to be one of
the most important keys in modern SAT solvers. It also plays an important role in portfolio-based parallel SAT
solving. However, in portfolio solvers, maintenance of diversification among solvers is not that simple, especially
for massively parallel machines. In this paper, we conducted several experiments to observe the variation of
execution times when solving SAT problems. During the preprocessing, we shuffled indexes of variables randomly.
This extremely simple preprocessing method shows some intriguing results, and we denote this with ’ISoV (index
shuffling of variables)’.

1. Introduction

During the evolution of multicore hardware, many paral-

lel SAT solvers have been proposed. The initial approach

was divide-and-conquer[1], [2]. However it was difficult to

find a successful load-balancing solution. In recent years,

a portfolio-based approach[3], [4]. has become the main-

stream of parallel SAT solvers. In portfolio approaches, the

maintenance of the diversification and intensification trade-

off is very important[5]. Diversification is easily acquired

with random noise, but it will lead to a different search

space, and intensification will deteriorate. Our goal is to ob-

tain extra diversity/intensity while maintaining the inten-

sity/diversity of search. We propose a simple preprocessing

method of index shuffling of variables, and we denote this

with ’ISoV’ in this paper. ISoV provides extra diversity, yet

keeps intensity. We implemented this method in MiniSat

2.2[6], and checked variation of execution times to observe

diversity. Intriguingly, this extremely simple method pro-

vided some diversification in execution time, and thus this

might be helpful to create diversity for massively parallel

environments.

2. Comparison of ISoV and MiniSat

2.1 About ISoV
Maintaining both diversification and intensification is the

key in portfolio-based parallel SAT solvers. However, in-

creased diversity in search may lead to weaken intensity. To

obtain extra diversity, we tried an index shuffle of variables

in preprocessing, and we denote this with ’ISoV’. The index

shuffle method does not destroy the structure of the prob-

lem, but it still changes the order of the variables, which

carries the possibility of changing results.

We implemented ISoV in MiniSat 2.2, the latest version

of MiniSat released. We’d compared the execution time

of ISoV with the original MiniSat, and obtained revised

Contact: Moon seongsoo, Creative Informatics (Univ of

Tokyo), Bunkyo-ku, Tokyo Yayoi 1-1-1 University of

Tokyo Graduate School of Information Science and

Technology, Graduate School of Creative Information

Department of I-REF Building 4F, Tel: 03-3812-2111,
E-mail address: logic85@hotmail.com

results for some problems. Though ISoV can be applied

to any solver to diversify search space, we chose MiniSat

to verify our method. As MiniSat is the most commonly

used SAT solver, many solvers have been developed based

on MiniSat. This means any refinements within MiniSat

will be available to many other solvers.

2.2 Experimental Results
We implemented ISoV in MiniSat 2.2. We used a problem

set of 300 industrial benchmarks from the SAT Competi-

tion 2014. We used Xeon X5680 3.3 GHz with 140 GB

RAM for this experiment. Each instance was measured 12

times (1 MiniSat + ISoV 11 times), and if we choose best

from the 12 results, this would indicate the approximate

cost when this method is implemented on a parallel solver

with 12 threads. The execution time-out limit was set to

3600 seconds on each instances. Figure 1 shows the com-

parison between MiniSat and ISoV on each problem. The

X-axis represents each instance and the Y-axis represents

the time needed to solve each instance. Each y value on

the ISoV line represents each instance’s best time from 11

ISoV results since we want to compare the execution time

between the orginal MiniSat and ISoV. ISoV shows a faster

time than MiniSat in many instances, but also exhibited

slower time in some instances. This is because we simply

shuffled indexes, meaning 12 cases are equivalent in per-

formance. Consequently any one of the 12 cases could be

the best solution for each instance. This figure’s curve also

indicates that ISoV was diversified in at least the execu-

tion time. MiniSat solved 162 problems in total. ISoV

solved 183 problems with an additional 21 problems which

were unsolved by MiniSat. The solving time was reduced

in 105 problems. Figure 2 shows a comparison for MiniSat

and the best time from 12 results (MiniSat + ISoV). This

means each y value on the MiniSat + ISoV line represents

the time needed to solve that instance if we ran in parallel.

Thus, this figure compares 12 hypothetical processes with

MiniSat, and the time amount of the space between the 2

lines will be improved if ISoV is parallelized.

In figure 3, we compare best time, worst time, and av-

erage time for each instance. We sorted data in ascending

order along the average time. When average time is in-

finity, date is sorted in ascending order along how many

1

The 29th Annual Conference of the Japanese Society for Artificial Intelligence, 2015

2H5-OS-03b-3



Fig. 1: Comparison between MiniSat and ISoV on each

problem

times it reached the time-out limit. Variance seems very

high when comparing the difference between the best time

and worst time for each instance. For some instances, while

the worst time reaches the time-out limit, but best time

indicates within seconds. At the very least, we can assume

execution time will be extremely different for some types of

SAT problems when we use ISoV.

2.3 Why did ISoV change execution time?
Initially we didn’t expect this simple method would

change cost for proof, because most state-of-the-art SAT

solvers are using VSIDS[7] . Therefore, decision-making

will be made by the most frequently learnt order regardless

of the variable’s index. However, there exists the prob-

lem of choosing a variable from ones with the same VSIDS

score. In MiniSat, the variable with the highest VSIDS

score is chosen according to the order in which it is added

to the heap. We assumed ISoV changes for this order, and

the changed order resulted in diversity. Since ISoV does

not deform the traits of the problem, it doesn’t lower the

performance of VSIDS. To demonstrate this assumption,

we experimented with some instances, and the results are

stated in the next section.

3. Picking a variable in MiniSat

3.1 Method in MiniSat2.2
VSIDS is a decision heuristics to pick a variable, and it is

implemented in MiniSat. When a clause is added to learnt

clauses, the score of each variable in the clause increases.

The score order is managed through the heap array, and the

highest one is chosen at each decision level. At this time,

ties are broken randomly according to Chaff[7]. Although

configurable, MiniSat simply choose the first index in the

order heap.

3.2 Picking from ties
We modified MiniSat to choose a variable randomly from

ties. We anticipated this would lead to results similar to

Fig. 2: Comparison between MiniSat and hypothetical 12

processes

Fig. 3: Comparison among worst, best and average cases

the ISoV results. We used a problem set of 21 industrial

benchmarks which are solved using ISoV and unsolved in

the original MiniSat. Figure 3 shows the comparison be-

tween ISoV and the shuffle ties. We thought there would

be an overhead time of O (ties number × log (heap size))

to check ties. However according to these limited 21 re-

sults, there seems not to be a huge performance difference

between these methods.

4. Concluding Remarks

We introduced ISoV and explained why this method di-

versifies execution time. This method seems to very similar

to shuffling ties in VSIDS, and we verified this with several

benchmarks.

The method of shuffling ties in VSIDS requires extra time

on every decision of a variable, and especially the costs

would be too big when a lot of ties happened. However,

2

The 29th Annual Conference of the Japanese Society for Artificial Intelligence, 2015



Fig. 4: Comparison between ISoV and shuffle ties

ISoV only shuffles once in pre-processing, and additional

costs are unnecessary. Therefore, this method may be use-

ful where the structure of massive ties happens frequently.

In our experience, the random strategy is inefficient for

industrial problems because there is the possibility of ignor-

ing the hidden structure in SAT problems. Our experiments

are simply choosing a variable randomly. Our next step is

the extraction of a meaningful variable from ties instead of

operating on random decisions. In order to do this, we have

to create a difference among VSIDS in ties which might re-

quire another feature extraction.

References

[1] Zhang, H., Bonacina, M. P., Hsiang, J.: PSATO: a

distributed propositional prover and its application to

quasigroup problems. Journal of Symbolic Computa-

tion 21, 543-560 (1996).

[2] Chrabakh, W., Wolski, R.: GrADSAT: A parallel SAT

solver for the grid. Tech. rep., UCSB CS TR N. 2003-05

(2003)

[3] Youssef Hamadi, Said Jabbour, and Lakhdar Sais.

ManySAT: a parallel SAT solver. JSAT, Vol. 6, No.

4, 245-262 (2009)

[4] Gilles Audemard, Bewnoit Hoessen, Said Jabbour,

Jean-Marie Lagniez, and Cedric Piette. Revisiting

clause exchange in parallel SAT solving. In Proceed-

ings of the 15th international conference on Theory and

Applications of Satisfiability Testing, SAT’12, 200-213

(2012)

[5] Long Guo, The Diversification and Intensification in

Parallel SAT Solving, Principles and Practice of Con-

straint Programming - CP 2010 (2010)

[6] Niklas Sorensson. MINISAT 2.2 and MINISAT++ 1.1.

A short description in SAT Race 2010 (2010)

[7] Matthew W. Moskewicz, Chaff: Engineering an Effi-

cient SAT Solver, DAC ’01 Proceedings of the 38th

annual Design Automation Conference (2001)

3

The 29th Annual Conference of the Japanese Society for Artificial Intelligence, 2015


