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Exising method for supervised clustering called Evolutionary Distance Metric Learning (EDML) has never been
compared to other clustering method. This work conducted experiments to compare EDML with other semi-
supervised clusterings, such as COP-Kmeans and other DML methods. The result empirically confirms that
EDML gives better clustering structure than the candidate clustering methods-i.e. K-means, COP-Kmeans, and
MPC-Kmeans. Also, we justify the effect of the number of constraints, effect of smoothing, and the feasibility to
evaluate EDML in various criteria. Therefore, EDML is assured that it has potential to improve clustering quality
and is capable of using various clustering indices.

1. Introduction

Many methods have been proposed for clustering prob-

lems. Despite the inspiration vary, their aspiration is to

group similar instances together in the same cluster and

vice versa[Yin 12]. However, there are no “right”answers

for clustering[Xing 02]. The performance of clustering is

critically determined by definition of similarity between the

data points. The similarity can be not only the Euclidean

distance between instances, but it can also be the Ma-

halanobis distance which satisfies the axiom of distance.

Generally, clustering algorithms are unsupervised learning.

On the other hand, in real application, some background

knowledge are coincidentally provided. The distance met-

ric learning (DML)[Yang 06] attempts to optimize a metric

to improve clustering or classification by taking advantage

of these given knowledge to transform the data space and

stretch the partitions.

In contrast to the conventional semi-supervised clus-

tering methods[Wagstaff 01, Bilenko 04], Fukui et al.

have proposed Evolutionary Distance Metric Learning

(EDML)[Fukui 13] that optimizes any cluster validity in-

dex such as Purity, F-measure, or Entropy, depending on

the clustering purpose. Furthermore, by using smoothed

cluster validity indices[Fukui 12] to consider neighbor rela-

tions in the data space, EDML successfully avoids the prob-

lem of over-fitting. Since an objective function based on

cluster validity is massively multimodal in changing of the

distance metric, EDML uses an evolutionary algorithm of

Self-Adaptive Differential Evolution (jDE)[Brest 06], which

can deal with multimodality without manual adjustment of

its control parameters. Also, EDML is compatible to any

clustering algorithms.

In this paper, we apply EDML for clustering in four
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experiments: (1) compare EDML with unsupervised and

semi-supervised conventional clustering algorithms, (2)

study the effect of number of labeled data, (3) study the

effect of neighborhood smoothing in clustering index and

(4) evaluate EDML with assorted criteria.

2. Related work

In this section, we introduce two of typical semi-

supervised clustering algorithms related to EDML.

2.1 Constrained K-means Clustering with
Background Knowledge: COP-Kmeans

Wagstaff et al. proposed COP-Kmeans[Wagstaff 01] that

is a modification of K-means by using background knowl-

edge that can be expressed as a set of pairwise constraints―
i.e. Must-link constraints indicate that two instances have

to place in the same cluster, and Cannot-link constraints

indicate that two instances must not be in the same clus-

ter. It proceeds as K-means which ensures that none of

specified constraints are violated.

2.2 Metric pairwise constrained K-means:
MPC-Kmeans

MPC-Kmeans[Bilenko 04] was proposed by Bilenko et al.

This clustering algorithm is a combination of constraint-

based clustering of COP-Kmeans which allows constraint

violation if it leads to a more cohesive clustering, and a

distance metric learning methods.

3. Evolutionary Distance Metric
Learning

3.1 Global distance metric learning
A Mahalanobis-based distance is used as many global

DML methods. Given a dataset D = {xi =

(xi,1, · · · , xi,v)
t ∈ Rv}Ni=1, the Mahalanobis-based distance
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can be defined as:

d2i,j = (xi − xj)
tM(xi − xj), (1)

where M = (mk,l) is a v × v matrix. The elements of M

(mk,l) are variables to be learned that represent a transfor-

mation of the input data, in this case, M must be a sym-

metric positive semi-definite matrix to satisfy the distance

propositions. Specifically, when only diagonal element in

M (where k = l) is used, we denote as “EDML-D”.

EDML approach optimizes a clustering index Eval as fol-

lows:

Maximize Eval(Clustering(d2i,j)), (2)

where Clustering(d2i,j) denotes a clustering result by using a

distance metric d2i,j such as Entropy, F-measure, and Purity.

3.2 EDML framework

Figure 1: Diagram of the evolutionary distance metric

learning (EDML) framework

The EDML framework is summarized in Fig. 1[Fukui 13].

First, the objective function in eq. (2) is optimized by using

an evolutionary algorithm. Differential Evolution with self-

adapting control parameters and generalized opposition-

based learning(GOjDE)[Wang 13], one of evolutionary al-

gorithm, is employed to generate candidates of the metric

transform matrix M candidates. Next, obtained M is ma-

nipulated to transform the data space via eq. (1). Then,

cluster structure is archived by K-means clustering. Af-

ter that, the quality of cluster structure is evaluated with

weighted Pairwise F-measure (which is introduced in the

next section) as Eval() in eq. (2). Then, feed this evalu-

ation value back into GOjDE as the fitness for new can-

didates of M. GOjDE selects candidates on the basis of

the fitness to evolve and generates the next candidates by

mutation and crossover with certain probabilities. These

steps are repeated until the limit iteration. Finally, we

archieve the best metric transform matrix M∗ in terms of

the smoothed clustering index among the overall genera-

tions of candidates.

3.3 Evaluation criteria
The clustering result is evaluated using the clustering

index. Because of pairwise constraints, we adopt the ex-

tension of one of pairwise-based cluster validity index call

weighted Pairwise F-measure(wPFM)[Fukui 12]. wPFM is

defined as followings.

t(i) = t(j) t(i) ̸= t(j)

c(i) = c(j) a b

c(i) ̸= c(j) c -

Table 1: Class and cluster confusion matrix of data pairs

Originally, Pairwise F-measure(PFM) is a harmonic av-

erage of the precision, which is a measure of the same class

among each cluster, and the recall, which is a measure of the

same cluster among each class. Whereas, wPFM is based

on a degree that the data pairs belong to the same cluster.

Given c(k) and t(k) denoting the cluster/class assignment

for the instance xk. Fukui et al. proposed likelihood(c(i) =

c(j)) indicating a degree that data pair xi, xj belongs to

the same class instead of the actual number of data pairs.

The likelihood(c(i) = c(j) or hc(i),c(j) is given by the inter-

cluster distance of data pair. Therefore, each value in

PFM’s class and cluster confusion matrix of data pairs show

in Table 1 is replaced by summation of likelihoods as fol-

lows:

a′ =
∑

{i,j|t(i)=t(j)}

hc(i),c(j), (3)

b′ =
∑

{i,j|t(i) ̸=t(j)}

hc(i),c(j), (4)

c′ =
∑

{i,j|t(i)=t(j)}

(1− hc(i),c(j)) = a+ c− a′. (5)

With these extended a’, b’, and c’, extended Precission

(P’) and Recall(R’) are defined as follows:

P ′ =
a′

a′ + b′
, R′ =

a′

a′ + c′
. (6)

Finally, wPFM which is a harmonic average of extended

precision and recall, is derived as follows:

wPFM =
2P ′R′

P ′ +R′ . (7)

4. Experiment

In this section, we conduct experiments to show the com-

parison between the EDML and the conventional semi-

supervised clustering algorithms.

4.1 Methodology
We compared EDML with the conventional K-means

(KMN), COP-Kmeans, and MPC-Kmeans. K-means is an

unsupervised clustering algorithm and regarded as the base-

line for comparison here. Since COP-Kmeans and MPC-

Kmeans are constraint-based clustering, we manipulate all

labeled instances to produce pairwise constraints to carry

out sufficient comparison.
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Figure 2: Cross validation results (Glass, Iris, and Segment

dataset)

4.2 Data sets
This experiment is conducted on five data sets from UCI

repository∗1: Glass, Iris, and Wine as small data sets, and

Segment and Vehicle as relatively large data. The attribute

values are normalized with mean is equal to zero and stan-

dard deviation is equal to 1 calculated from only training

data. The properties of all data sets are sumarized in Table

2.

Data set #Class #Instance #Attribute

Glass 6 214 9

Iris 3 150 4

Wine 3 178 13

Segment 7 2310 19

Vehicle 4 846 18

Table 2: Basic properties of the data sets

4.3 Experimental setup
We validated performance by a 10-fold cross validation

with labeled sample rate Lsrate = 0.3. Particularly, ran-

domly selected 30% of all the instances were set as labeled

instances. The numbers of clusters were set according to

data set size-i.e., 20 and 50 to small and large data set re-

spectively. For each data set, we performed a 10-fold cross

validation on each algorithm for 25 times, which come from

5 times random initial centroids multiplied by 5 times ran-

dom selection of labeled instances. Here, cluster centroids

and distance metric learning matrix(M) are also obtained,

these results were carried out in test data evaluation pro-

cess. DML was used to transform the data space and con-

tinually cluster assignment using cluster centroids which ob-

tained by cluster analysis over training data.

4.4 Comparision result
Fig. 2 and Fig. 3 show the cross validation results on all

data set. Here, EDML-D and EDML can easily performed

better than all other clustering method; however, MPC-

Kmeans barely overcomes EDML-D.

4.5 Effect of the number of labeled data
Next, we checked varieties numbers of Lsrate to observe

a transition of the average fitness in terms of wPFM. The

Lsrate we used are 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 1.0.

Fig. 4 shows transitions of the average of fitness over

twentyfive trials with random initial values and constraints

∗1 http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Figure 3: Cross validation results (Wine and Vehicle

dataset)

when changing labeled sample rate Lsrate. Here, when

Lsrate = 0.05 or 5%, labeled samples are only 8 and 38

in Wine and Vehicle, respectively. Even in extremely small

number of labeled instances conditions such as Wine data

set, EDML could obtained roughly 0.78 in wPFM both

training and test data. The evaluation values increase ap-

proximately over 10% in both data set-i.e. 13%, 16% in

Wine, and 18%, 21% in Vehicle using EDML-D and EDML,

respectively. Moreover, both EDML-D and EDML fitness

are abruptly increase when Lsrate is less than 0.3 and gradu-

ally increase when above 30%. Lastly, EDML-D and EDML

tends to archive roughly the same wPFM in small number

of labeled instance (Lsrate < 0.2), this shows that when we

have less than 20% of known instances, EDML-D can take

part in EDML to reduce complexity.
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Figure 4: Transitions of the clustering index with different

numbers of labeled instances

4.6 Effect of smoothing
The following presents the effect of smoothing in cluster-

ing index, which is specified by the likelihood function, is

the comparison between the EDML that was trained with

PFM and wPFM.

Fig. 3 shows the effect of smoothing in the clustering in-

dex, which is specified by the likelihood function in eq. (7).

EDML without smoothing (EDML-PFM) provides lower

result comparing to MPC-Kmeans, because MPC-Kmeans

uses unlabeled instance to steer the clustering result when

evaluating with clustering index without smoothing.

4.7 Evaluation by various criteria
Lastly, for the fair evaluation and to show robustness

of EDML in various criteria, we employed different clus-

tering indices[Fukui 12] to evaluate the clustering result

such as Entropy(ENT), Purity(Purity), F-meassure(FME),

Pairwise F-meassure(PFM), and Pairwise Accuracy (PAC)

both original index and with neighborhood-based smooth-

ing(represented with prefix “w”-i.e. wENT, wPUR, wFME,
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wPFM, and wPAC).

Table 3 shows the cluster indices score in comparison of

EDML and other clustering algorithm. When EDML is

obtained better clustering index for less than 1%, 1%-5%

or over than 5% , it is denoted by 0+, + and ++ and vice

versa. In second row, D and F denote the EDML-D and

EDML.

From these tables we can obtain insights as follows:

• Obviously, when we evaluate the clustering result with

wPFM, EDML provides the highest result in every

comparison, because EDML employs wPFM as the ob-

jective function. We also obtain the best result in every

comparison when evaluating with wFME, since wPFM

and wFME have similar calculation process.

• Since EDML attempts to transform the data space to

make instances with the same class close together, it

usually provides higher evaluation score when it is eval-

uated by clustering index with smoothing even in other

criteia.

KMN COP MPC

D F D F D F

ENT 0+ + 0+ + 0- 0-

FME ++ ++ ++ ++ - -

PAC 0- 0- 0- 0- 0- 0+

PFM ++ ++ ++ ++ 0- 0-

PUR – – – – - 0+

wENT ++ ++ ++ ++ 0- -

wFME + ++ ++ ++ + ++

wPAC – – – – – -

wPFM ++ ++ ++ ++ ++ ++

wPUR – – – – – -

Table 3: Comparison of various cluster indices on Vehicle

data set

5. Conclusion

In this paper, we evaluate EDML by comparing it

with the conventional clustering algorithms: unsuper-

vised clustering: K-means, semi-supervised clustering both

constraint-based method: COP-Kmeans and distance-

function method: MPC-Kmeans. The comparison results

empirically showed that EDML is better than all other

method by evaluate cluster structure with clustering in-

dex. Thus, EDML has a potential to improve clustering

quality. Not only that, we illustrate the transition of clus-

tering index. The higher number of labeled instance, the

higher clustering index and EDML also successfully avoids

the problem of overfitting. Furthermore, only 30% of la-

beled instance are enough to performs the EDML. Then

we showed the effect of smoothing that EDML performed

better when smoothing the clustering index. Last but not

least, EDML is satisfy that it is capable of various clustering

indices.
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