
Activity Dependency in Collaborative Networks

Pablo Loyola Yutaka Matsuo

Graduate School of Engineering, The University of Tokyo

Open Source Software (OSS), as well as other distributed collaborative initiatives such as Wikipedia, is based
on a continuous stream of voluntary contributions from developers with different incentives, skills and motivations.
In this work, we focus on analyzing the behavioral patterns that emerge after a contribution is merged to the
official codebase. In particular, we are interested in the activities generated by the community after they assimilate
a particular contribution. This subsequent activity usually involves patches, related contributions and bug fixes,
which arrive in the form of a chain reaction, especially when it is generated from a highly reputed member. We
studied this phenomenon taking into account both technical and social aspects of the software development process
and generated a prediction model based on the concept of cascades. Our initial experiments shows that this
approach has the potential to simulate real contribution dynamics.

1. Introduction

In Open Source Software (OSS) development dynamics,

the stream of continuous contributions represents the key

aspect that maintains the project alive [8]. These contribu-

tions are not only additions of new features, but also bug

fixes, discussions and test suites.

The main characteristics of this phenomenon, such as the

non-centralized development and the heterogeneity of the

participants, have several advantages [10, 9], but also rep-

resent a challenging factor in relation to the managerial

aspects of the software engineering process. A considerable

proportion of OSS projects follows a pull request contribu-

tion model [5], where it is necessary to review and discuss

every new contribution before it is merged to the official

branch of development. As the people in charge of review-

ing the contributions is scarce (usually core members), it

could be convenient to have in advance an estimation of

the contribution activities in order to plan the distribution

of workload in an effective way.

Therefore, the remaining question is how to generate a

prediction model for the contribution activity. Although

standard methodologies for prediction can be used, we hy-

pothesize that their inherently shallow structure will not

incorporate the intrinsic characteristics of the contribution

dynamics. We believe that the level of activity at a cer-

tain point should not be predicted using only data from

a predefined initial condition. Therefore, the intermediate

behaviors should be considered. The main rationale for that

assumption is that there is a dependency between the ac-

tivities in the sense that a given contribution ignites a set of

related contributions. An example is presented in Figure 1:

user A submitted a contribution a, which was merged to the

official branch. Contribution a was the addition of a new

feature to the system. User B analyzed this contribution

and decides to build something else on top of a. There-

fore, she submitted a contribution b, which was reviewed

and merged to the official branch. Subsequently, user C de-

tected a compatibility issue related to b which was not seen

during the code reviewing process, therefore, she submitted

Contact: Pablo Loyola, pablo@weblab.t.u-tokyo.ac.jp

Figure 1: Example of dependency in contribution dynamics.

a bug fix c.

As we can see from the previous example, one particular

contribution triggers the generation of set of related con-

tributions, which in turn trigger another set, conforming a

chain reaction, until the activity naturally decays or reach

and steady state. Initial evidence shows that this type of

behavior occurs and it common when the the project hits a

milestone, such as the release of a new version, or when a

highly reputed member submits a contribution [4].

We took as a main inspiration the work conducted in the

field of social network analysis, specifically on the cascade

phenomenon, which is the diffusion of content in a network

through a re-sharing functionality. The rationale for this is

that the problem we are considering shares the same nature

with the content cascades in social networks: We are in

presence of a initial action that triggers a sequence of related

activities.

Our approach consists of firstly identifying the groups

of linked activities (along the initial igniting contribution),

then we extract a set of features that allow to characterize

each group. Subsequently, we define the prediction problem

as a binary classification: given that the post contribution

activity has reached a length of k, we would like to predict

if it will reach m(k), which the median length of all groups

of linked activities that have at least k elements.

We performed an empirical evaluation using data from

the Github collaborative platform, which allowed to extract

both technical and social data from the development pro-

cess and performed a exploratory study. Our initial results

shows that the proposed approach has the potential to pre-

dict dependency length in a reliable way.

1

The 29th Annual Conference of the Japanese Society for Artificial Intelligence, 2015

1L5-5

2. Proposed Approach

Our main inspiration comes from the study of content dis-

semination in Social Networks, where the concept of cascade

is defined as the process in which a piece of content is shared

sequentially among participants through a re-sharing mech-

anism.

Our observation on OSS activity allowed us to realize that

the contribution dynamics have certain similarities with the

cascade phenomenon. As the development of an artifact (a

new feature or a bug fix) is based on a collaborative process,

each new component is built on top of the previous work.

Therefore, there is a chain of dependency between each con-

tribution and the later activity generated. As source code is

accessible for all the group of developers and subversion sys-

tems, such as Git, provide a robust and clean handling of all

the activity, each participant is able to assimilate the latest

changes in an easy way. Then, each new contribution opens

a new space of possibilities for the rest of the team: Some

of them, could visualize a new feature, given the new set of

instructions added. Others may find a backward compati-

bility issue, which will need to be fixed. Literature shows

examples of dependent behavior in contributions for several

OSS projects, in the form of herding, as reported in [4].

Therefore, one particular action triggers a group of linked

activities, generating a cascade of contributions. We are

interested in studying the dynamics of this group of activ-

ities by predicting its length. This means, given an initial

contribution, we would like to estimate how many related

activities will be generated.

To achieve such goal, we took the state of the art on cas-

cade prediction, a recent work by Cheng et al. [3], as a

methodological framework to build our approach. In their

paper, the authors modeled the cascade prediction prob-

lem not as as the estimation of the final length given initial

conditions, but as a continuous ensemble of sub-predictions.

In this sense, given a cascade has reached a length of k, it

is desired to predict if it will grow beyond the median of

sizes f(k), f(k) > k. Therefore, the task is composed by

a sequence of predictions, one for each observed size. This

configuration has several advantages, such as that classes

will eventually follow a more homogeneous. But in the con-

text of designing a tool that can support the management

of collaborative tasks such as OSS development, the ability

to monitor the performance and provide an estimation of

the upcoming activity in a continuous way, is the one that

appears more relevant.

Contrary to the Social Network scenario, where cascades

are explicitly available, in OSS it is necessary to initially

find a reliable way to group activities in a way that they

represent a sequential and dependent chain of events. Once

the cascades are identified, we define the prediction prob-

lem and proposed a method for obtaining the corresponding

estimation.

2.1 Model
We assume a standard decentralized collaborative envi-

ronment in which a set of U users work under a semi-guided

way on a artifact A that is conformed by a set of E elements.

Each user ui ∈ U can access anytime and visualize the the

state of each component ej ∈ E. Examples of this can be

found in OSS development, Wikipedia and any other col-

laborative content generation.

Actions: An action is part of the set of feasible pro-

cedures that can be applied on any ej ∈ E. For ex-

ample, in an OSS context, an action a is such that a ∈
{create, update, delete}, as this set represent what a user

can do.

Contribution: A contribution is defined as a set

of actions carried out by a user ui ∈ U over a sub-

set of k elements of A in a time t, namely CiKt =

{(ui, aj , c1, t), (ui, aj , c2, t), ..., (ui, aj , cK , t)}. This repre-

sentation is usually present in OSS development ecosystems,

as they usually relies on a subversion systems such as Git,

where the user work locally and then submits his contribu-

tion for revision in the form of a pull request. Therefore, all

the actions are encapsulated into a defined set which has

associated a time-stamp and a user.

Contribution Cascade: A contribution cascade is a

sequence of contributions that are linked on a dependency

basis. The cascade begins by an initial contribution which

modifies the artifact under development in a specific way

and that is carried out by a particular user. We called this

contribution the initial contribution. The changes produced

by the initial contribution on the artifact are noticed and

acknowledged by the rest of the group of users, which in

turn may decide to generate a new contribution based on

it. Therefore the following contribution depends on the

current one.

2.2 Contribution Cascade Identification
We need to group the contributions in a way that takes

into account the similarity of the software components mod-

ified but at the same time the dependency in terms of time.

Grouping software components is a task already studied

by the research community. Several methods have been

proposed such as [11, 2]. The dependency between com-

ponents have also been studied and it is commonly known

as coupling [1]. But these methods are mainly focused on

grouping software artifacts, such as files and libraries, based

on co-change frequency. In our case, we are interested in

the inverse task, as it is necessary to group the activities

conducted on the set of artifacts.

While the natural idea is to group together contribu-

tions that change similar sets of components, in the case

of software development the explicit dependency between

the modules that are being modified needs to be taken

into consideration. To illustrate this issue, Figure 2 shows

the feasible configurations between two given contributions

(namely red and blue), assumed coming from different users

at different times (tred < tblue). In (a) it can be seen that

both contributions are focused on disjoint sets of modules,

but there is an implicit relationship between them, as the

software components they modify are dependent, therefore

we call this configuration (non-overlapping, dependent). In

(b), we have some shared elements among contributions,

which are also dependent, therefore, this is a (overlapping,

dependent) configuration. Similarly, we have (overlapping,

2

The 29th Annual Conference of the Japanese Society for Artificial Intelligence, 2015

Figure 2: Instances of overlapping and dependency among

contributions.

non-dependent) and (non-overlapping, non-dependent) con-

figuration for (c) and (d) respectively.

Given the above, we need a way to acknowledge the direct

and indirect relationships that exist between contributions,

and from that generate reliable grouping method.

Similarity Metric: We propose a similarity metric for

comparing contributions that takes into account the over-

lapping between modified elements, but also the relation-

ship between elements that comes from their time depen-

dency. Given two contributions ci and cj with associ-

ated set of modified files Mci and Mcj respectively. Then,

we propose the following similarity metric: S(ci, cj) =

DS(ci, cj) + IS(ci, cj), where DS(ci, cj) represents the di-

rect similarity that comes from the overlapping subset of

elements modified by both contributions and is defined by:

DS(ci, cj) =
Mci

∩Mcj

max{‖Mci
‖,‖Mcj

‖} and IS(ci, cj) represents the

indirect similarity between contribution that derives from

the existent dependency between artifacts. In this case,

given an element a ∈ Mci and b ∈ Mcj , such as a, b /∈
Mci ∩Mcj , if there is a path from a to b in the dependency

structure of the software system under study, then the sim-

ilarity is given by
∑

a∈(Mci
\Mcj

)

∑
b∈(Mcj

\Mci
)

1
‖patha→b‖

.

For this case, it is assumed ‖patha→b‖ 6= 0 and that if ex-

ists, there is one unique path from a to b. If there are more

than one, the shortest path is selected.

One of the requirements for the grouping algorithm is

that the resulting subsets of contributions should follow a

defined order. This order is the key element that supports

the idea is cascading : if contribution A depends on or was

influenced by contribution B, then it is necessary that A

was generated before B. The time interval between con-

tributions is assumed to represent the period on which the

community noticed the first contribution and based on their

understanding and usage, decided to conduct new modifi-

cations on the code, which will conform the second contri-

bution.

Therefore, the question is how to incorporate this dimen-

sion into the clustering methodology in order to generate

feasible cascades? As a first step, it will necessary to or-

der the contributions before performing the any grouping

activity.

As literature does not provide an definitive way to achieve

this goal [7], we propose an exploratory analysis consisting

of the comparison between two methods with different na-

ture. We expect to obtain insight about the performance of

the methodologies in relation with the specific characteris-

tics of the data.

K-means with post-ordering: This method consists of

two phases. Firstly, the contributions are grouped through

standard K-means using the similarity metric presented

above. The number of clusters is chosen by minimizing

the ratio between intra and extra cluster distance. Then,

the second phase consists of taking each resulting cluster

and order the contributions in relation to the time they

were submitted. This part involves a specific filtering, as a

threshold must be specified.

Heuristic approach: This method is based on a set

of ad-hoc rules. It initially takes the set of pull requests

available from the repository, ensuring it is ordered.

The algorithm uses three parameters to generate the clus-

ters: Firstly, the time interval between contributions ∆t, as-

suming that although two contributions could be similar in

terms of the files they modify, if they are not close in terms

of time, the should not be considered as part of the same

cascade. The second parameter is the accumulated time

of the cascade, which must be less than a fixed Tc. This

assumption is based on the observation that real world cas-

cades tend to fade over time and have a defined ending. The

third parameter is the minimum level of similarity Smin the

that a contribution needs to have with the previous added

one in order to be incorporated to the cascade.

The algorithm begins by taking the first contribution and

comparing it with the second. If the three constrains are

satisfied, both contributions are linked. Then, the process

continues analyzing the second and the third contribution,

and so on. Then, the algorithm takes the second contribu-

tion as the initial one and the process is conducted again.

This leads to several candidate configurations. The criteria

used is to choose the configuration that minimizes the ratio

between the number of cascades and their average length.

2.3 Cascade Feature Selection
Project Features: The project is the ecosystem in

which all the interactions and activities are held. Therefore

it is key element to consider in our study. In that sense, we

are considering all the elements the influence the generation

of new activities. Features in this category include number

of watchers, commits and average level of activity in the

pull requests discussions.

Contribution Features: Contributions, in the form of

pull requests are the basic unit of activity considered in this

study. They provide the details of how the developers mod-

ify the source code of the project, such as the files added or

changed. Additionally, it provides all the interaction gener-

ated while the contribution was reviewed by the core team.

We make the distinction between the initial contribution

and the set of subsequent contributions. Features in this

category include timestamps of creation, merge and clos-

ing, number of commits included, the amount of activity

(in terms of people, review actions and comments) and the

proportion between files added, modified or deleted, among

others.

Contributor Features: The contributor is the devel-

oper that visualized an opportunity of improvement and

decided to submit a new feature or bug fix to the We also

make the distinction between the contributor the responsi-

ble for the initial contribution and the ones that are part

of the subsequent activities. Features in this category in-

clude level of ownership, number of projects the contributor

3

The 29th Annual Conference of the Japanese Society for Artificial Intelligence, 2015

is working on, social features (watchers, favorites), among

others.

2.4 Prediction Problem Definition
In order to avoid the issues that previous works on cas-

cade prediction presented (unbalanced classes and over-

representation of large instances), we modeled the prob-

lem as a binary classification. Given a set of linked activi-

ties, with length of A elements , we observed the first one,

namely the igniter, and the k − 1 following, comprising a

subset of k elements, with k < A. Then, our task is to pre-

dict if the size if the length of the set of linked activities will

reach f(k), which is the median size of all the set of linked

activities that reach at least k activities. This classifications

task is carried out using logistic regression.

3. Exploratory Study

We collected data from Github social coding platform,

specifically using the pullreqs project, which comprises de-

veloper contribution from several important projects on

Github (See [6] for more details). For this exploratory anal-

ysis, we chose six relevant projects and from their historical

data the analysis was performed.

The procedure consisted on choose an starting size and

sequentially increment it while analyzing the overall accu-

racy. Given the data obtained, we began with k = 3 and

explore until k = 14.

Figure 3: Exploratory results based on Github activity.

As seen from the Figure 3, the accuracy increases as the

cascade get longer, but in most cases the rate of increase is

reduced, this means that, although the information gath-

ered over time is useful to improve the predictability of the

cascade, at the same time, the current model is not capable

of fully handle the variability. In terms of how the contribu-

tion dynamics influence the performance of the approach,

we found initial evidence that, given a initial contribution,

if the subsequent activity begin in a short time, the cascade

tends to be larger. We hypothesize that an intense stream of

contributions boosts the overall activity and collaboration

among the team.

In terms of the categories of features that have more ex-

planatory power, the set of contribution features outper-

forms the rest of the sets (average of .78), followed by con-

tributor features (average of 0.66).

Although this is a limited study, it can be seen that the

prediction of the dependency should be understood as a

continuous process, as simply considering the initial stage

lead to poor performance. This setting is useful in the con-

text of OSS, as core members can monitor activity and es-

timate accurately level upcoming level of contributions.

References

[1] F. Beck and S. Diehl. On the congruence of modularity and

code coupling. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Founda-

tions of Software Engineering, ESEC/FSE ’11, pages 354–

364, New York, NY, USA, 2011. ACM.

[2] D. Beyer and A. Noack. Clustering software artifacts based

on frequent common changes. In Program Comprehension,

2005. IWPC 2005. Proceedings. 13th International Work-
shop on, pages 259–268, May 2005.

[3] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and

J. Leskovec. Can cascades be predicted? In Proceedings
of the 23rd international conference on World wide web,

pages 925–936. International World Wide Web Conferences

Steering Committee, 2014.

[4] J. Choi, J. Choi, J. Y. Moon, J. Hahn, and J. Kim. Herding

in open source software development: an exploratory study.

In Proceedings of the 2013 conference on Computer sup-
ported cooperative work companion, pages 129–134. ACM,

2013.

[5] G. Gousios, M. Pinzger, and A. van Deursen. An explo-
ration of the pull-based software development model. In

ICSE ’14: Proceedings of the 36th International Confer-

ence on Software Engineering, jun 2014. To appear.

[6] G. Gousios and A. Zaidman. A dataset for pull request

research. In MSR ’14: Proceedings of the 11th Working
Conference on Mining Software Repositories, may 2014. To

appear.

[7] E. Keogh and J. Lin. Clustering of time-series subsequences
is meaningless: implications for previous and future re-

search. Knowledge and information systems, 8(2):154–177,

2005.

[8] J. Lerner and J. Triole. The simple economics of open

source. Working Paper 7600, National Bureau of Economic

Research, March 2000.

[9] A. Meneely and L. Williams. Secure open source collab-

oration: an empirical study of linus’ law. In Proceedings

of the 16th ACM conference on Computer and communi-
cations security, CCS ’09, pages 453–462, New York, NY,
USA, 2009. ACM.

[10] T. Zimmermann and C. Bird. Collaborative Software Devel-
opment in Ten Years: Diversity, Tools, and Remix Culture.
In Proceedings of the Workshop on The Future of Collabo-

rative Software Development, 2012.

[11] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl.

Mining version histories to guide software changes. Software

Engineering, IEEE Transactions on, 31(6):429–445, June
2005.

4

The 29th Annual Conference of the Japanese Society for Artificial Intelligence, 2015

