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Many variants of pseudo-cliques have been introduced as relaxation models of cliques to detect communities
in real world networks. For most types of pseudo-cliques, enumeration algorithms can be designed just similar
to maximal clique enumerator. However, the problem of enumerating pseudo-cliques are computationally hard,
because the number of maximal pseudo-cliques is huge in general. Furthermore, because of the weak requirement
of k-plex, sparse communities are also allowed depending on the parameter k. To obtain a class of more dense
pseudo cliques and to improve the computational performance, we introdue a derived graph whose vertices are
cliques in the original input graph. Then our target must be cliques or pseudo cliques of the derived graph under
an additional constraint requiring high density in the original graph. An enumerator for this new class is designed
and its computational efficientcy is experimentally verfied.

1. Introduction

For graph theory, cliques are subgraphs in which all ver-

tices connect to each other. It is usually used to detect

densely connected communities. However, for real-world

datasets, there exist many noises to make dense communi-

ties not to be cliques. The strict definition of clique is not

suited for real applications. To address this issue, many

relaxation models of clique, also called pseudo-cliques, are

introduced [3]. Every pseudo-clique model weaken some re-

quirements of clique. k-clique and k-clan are defined by

weakening reachability. k-core, k-plex are defined by relax-

ing the requirement of closeness. In cases of k-cores and

k-plexes, some vertices may not be connected. In this pa-

per, we will mainly discuss k-plex.

K-plex was introduced by Seidman [1]. K-plex is a sub-

graph in which each member is connected to at least n− k

other members. When k = 1, k-plex becomes clique. For

k-plex model with small k values as (k = 2, 3), k-plexes can

detect the densely connected subgraphs. However, when

k grows larger, sparse graph such as chain or circle will

become k-plexes. The number of k-plexes also grows ex-

ponentially. Even though clique enumeration can be done

efficiently, the task of finding all the maximal k-plexes for

larger k is actually impractical, because k-plex allows much

more combinations of vertices than clique.

In this paper, our target is to obtain densely connected

k-plexes with cliques as their components, inluding overlap-

ping cliques in paper [8]. We consider the k-plexes are only

combined from maximal cliques whose size is larger than a

given lower bound. In other words, the target of this paper

is to detect the maximal clique sets under the k-plex con-
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straint. By introducing the concept of k-Maximal-Clique-

Set(k-MCS) and k-clique-graph, maximal clique sets can be

found efficiently with a simple algorithm. Moreover, to ex-

clude the k-plexes which have sparsely connected core, we

also introduce bond measure as an extra constraint into our

algorithm. The bond constraint can cut off most combina-

tion of sparsely connected k-plexes with small “cores”. The

rest of this paper is organized as follows. Basic definitions,

notations are presented in Section 2.1. Section 2.2 presents

the basic idea of k-MCS and k-clique-graph. Our algorithms

are given in Section 2.3 and an additional constraint called

bond measure is introduced in Section 2.4. We also show

experiments of our algorithms in Section 3. Finally the pa-

per is concluded with a summary and direction for future

works.

2. Proposed Method

2.1 Notations
Let G = (V,E) be a simple undirected graph. Vertices

V = {v1, v2, . . . , vn} and edges E = {e1, e2, . . . , em}. |G|
denotes the number of vertices in G. A subset of vertices

c ⊆ V is a clique if all the pairs of vertices are connected to

each other. A clique is maximal if it is not a proper subset

of another cliques. C(G) = {c1, c2, . . . , cj} denotes all the

maximal cilques of G, and all its members are sorted by size

so that |c1| ≥ |c2| ≥ · · · ≥ |cj |. The problem of enumerating

all maximal cliques is “Maximal Clique Problem” and the

base algorithm is called BK which was first introduced in

1973 [2].

Definition 1 A subset of vertices S ⊆ V is a k-plex if

degG[S](v) ≥ |S| − k for every vertex v in S.

A k-plex is called maximal if it is not a proper subgraph of

other k-plex. Because of the weak requirement of k-plexes,

target vertices are not guranteed to be connected. k-plex is

anti-monotonic, it means that if vertices set X is k-plex, for

any subset Y ⊂ X, ∀x ∈ X − Y , {x} ∪ Y is also a k-plex.
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Definition 2 A subset of cliques T ⊆ C(G) is a k-MCS if

for T = {ca, cb, . . . , cu} (a ≤ j, b ≤ j, . . . , u ≤ j), vertices

set ca ∪ cb ∪ · · · ∪ cu is a k-plex in G.

A k-MCS is maximal if it is not a proper subgraph of any

other k-MCS. But it is clear that maximal k-MCSes are not

always maximal k-plexes in graph G. Different maximal k-

MCS may represent the same vertices set in G. Eventhough

deleting duplicated point can be easily done as post-process,

here we still treat them as different k-MCS. According to

the definition, k-MCS is also anti-monotonic. From now on,

we will say a clique set C = {ca, cb, . . . , cu} is a k-plex in G

by meaning ca ∪ cb ∪ · · · ∪ cu is a k-plex in G.

2.2 Basic Idea
For a given graph G, integer k and size parameter L, we

enumerate all the maximal cliques ci in G with constraint

|ci| ≥ L and search for all the maximal k-MCSes based on

this clique set. If L = 1, we are using all the maximal

cliques. Size constraints on cliques is extremely useful for

the graphs that contain large amount of triangles or soli-

tude vertices. We should also point out that enumerating

all maximal k-MCSes equals the process that searching for

all maximal k-plexes on a graph in which all the vertices

are cliques. To give a clear state, we have the following

definition:

Definition 3 A graph CG = (CV , CE) is called k-clique-

graph if every vertex ci ∈ CV is a clique in graph G and

an edge exists between two vertices ci and cj if and only if

ci ∪ cj is a k-MCS.

According to Definition 3, only the pairs that can be k-

plexes are connected to each other. From anti-monotonicity

of k-MCS, we know that for a vertices set C ⊆ CV , C is a

clique on k-clique-graph CG if C is a k-plex in G. When

searching for maximal k-MCSes, this property allows us to

limit candidates in a small range, which is all the maximal

clique on k-clique-graph. We call the cliques on k-clique-

graph “meta-clique” because they are the cliques of cliques

for graph G. We have to point out that cliques on k-clique-

graph are not always k-MCSes when the size of meta-cliques

is larger than 2. It is necessary to validate all the meta-

cliques with more than 2 members if they are k-MCSes or

not.

2.3 Algorithms
Algorithm 1 gives a general steps for enumerating all

maximal k-MCSes. In this algorithm, Build-K-Clique-

Graph (Algorithm 2) will build a k-clique-graph from nor-

mal graph. Then it is able to list all meta-cliques by

Enumerate-Maximal-Clique-K-plexes (Algorithm 3). In Al-

gorithm 2, we first enumerate all the maximal cliques,

then validate all the cliques pair-wisely if they can be a

k-clique-graph or not. In Algorithm 3, we search for all

maximal “meta-cliques” on k-clique-graph which is built

in previous step. The algorithm is designed based on

CLIQUES [6], an efficient algorithm for enumerating max-

imal cliques. A clique set X will be expanded into a

larger clique set Xx = X ∪ {x} under k-plex constraints

by adding a vertex x ∈ Cand(X), where Cand(X) = {v ∈
∩N(X)|X∪{v} is a k-plex in G}. Starting from the empty

k-plex X = ∅ and Cand(X) = Cv, we recursively iterate

this process until there is no clique set can be expanded.

In all these algorithms, FindMaximalCliqeus can be any

algorithm to enumerate all maximal cliques on undirected

graph. Here we use the BronKerbosch algorithm which was

introduced in [2].

Algorithm 1: Maximal-k-MCS

Input: An undirected graph G = (V,E)

Output: All maximal k-MCSes
CG = BuildKCliqueGraph (G);

result = EnumerateMaximalCliqueKplexes (CG);

return result ;

Algorithm 2: Build-K-Clique-Graph

Input: Graph G, Integer K, L

Output: k-clique-graph
Initialize CV = ∅, CE = ∅;
cand = FindMaximalCliques (G);

while cand ̸= ∅ do

curCand = a clique in cand;

cand = cand− curCand;

if |CV | < L then

continue;

end

for all cliques ci in CV do

if ci ∪ curCand is k-plex then

CE = CE + e(i, ∥CV ∥);
end

end

CV = CV + curCand;

end

return G(CV , CE);

2.4 Bond Constraint
In many cases, our target is to find dense parts of graphs.

However, as we have already discussed, k-plex does not have

constraint on connectivity. In the algorithm 2 (Build-K-

Clique-Graph), clique sets can be k-MCSes regardless of

whether they are connected or not. For this reason, we use

bond [5], an extended Jaccard coefficient, to calculate the

degree of overlappingness of two vertices sets. The defini-

tion of Bond is shown in Definition 4. By only considering

the clique pairs whose bonds are above certain degree, it

allows us to focus on the dense connected parts of graphs.

Algorithm 4 shows the algorithm for building k-clique-graph

with bond measure.

Definition 4 For two vertices set A and B, the Bond Mea-

sure is defined as Bond(A,B) = |A∩B|
|A∪B|

For dense graphs, there usually exist large amount of

maximal cliques. In Algorithm 2, all cliques are checked
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Algorithm 3: Meta-Clique(CG, R, P , X)

Input: k-clique-graph CG, compsub R, candidate set

P , not set X

Output: Set of maximal k-MCSes
if P and X are both empty then

output R;

return;

end

choose the pivot vertex u in P ∪X as the vertex with
the highest number of neighbors in P ;

cand = P N(u);

while cand ̸= ∅ do

curCand = smallest clique in cand;

tmpP = P ∩N(v);

tmpX = X ∩N(X);

newP = all clique in tmpP that can form k-plex
with R;

newX = all clique in tmpX that can form k-plex
with R;

Meta-Clique(CG, newP , newX);

cand = cand− curCand;

P = P − curCand;

X = X + curCand;

end

return;

Algorithm 4: Build-K-Clique-Graph-With-Bond

Input: Graph G, Integer K, L, Float B

Output: k-clique-graph
Initialize CV = ∅, CE = ∅;
cand = FindMaximalCliques (G);

while cand ̸= ∅ do

curCand = a clique in cand;

cand = cand− curCand;

if |CV | < L then

continue;

end

for all cliques ci in CV do

if Bond(ci, curCand) > B then

if ci ∪ curCand is k-plex then

CE = CE + e(i, ∥CV ∥);
end

end

end

CV = CV + curCand;

end

return G(CV , CE);

Name # of N. # of E. Density

GEOM-0 7343 11898 0.00044

CA-GrQc 5242 14484 0.00105

Table 1: Statistics of datasets

Figure 1: Degree Distribution

pair-wisely if they are k-MCSes or not. This will take a

long time. By introducing bond measure, we are able to

cut most useless candidates to improve the performance of

enumerating algorithms.

3. Experiment

In order to evaluate the efficiency and scalability of our

algorithm, we perform experiments on several benchmark

graph datasets. The basic statistics of graph datasets are

shown in Table 3.. Test instances are mainly real-world

social networks. ca-GrQc is provided by Stanford Large

Network Dataset Collection [7]. ca-GrQc is a collabora-

tion network of Arxiv General Relativity. Geom0 is a part

of Pajek [4]. This dataset is a collaboration network in

computational geometry. The degree distribution of these

dataset is plotted in Figure. 3.

The whole program is impremented in C with libGC and

compiled with Clang. Our experiments are performed on

Linux with single core 2.4GHz CPU and 8 Gbytes mem-

ory. The program is terminated if it runs for more than

180 minutes (three hours). As a comparison, we also per-

formance the same experiments with the stardard k-plex

enumerator, which is referred as MS-MaxKPlex [9]. The

standard enumerator contains the following constraints on

target maximal k-plexes:
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Figure 2: Dataset: GEOM0

• k-plex is connected.

• k-plex is not a path.

• k-plex contains at least k + 1 vertices.

Furthermore, to compare with Meta-Clique, we added a

minimum size constraint for MS-MaxKPlex. The constraint

is that for given input integer L, only the k-plexes contain

more than L vertices will be outputed. Figure 2 and Fig-

ure 3 shows the comparison of the number of k-plexes enu-

merated by meta-clique and MS-MaxKPlex. Here j repre-

sents the size constraint of cliques in meta-clique and size of

k-plex in MS-MaxKPlex. Bond constraint of meta-cliques

is set to 0. This means only connected k-MCSes will be enu-

merated. We can see that comparing with maximal k-plex

enumerating, the meta-clique algorithm can restrict target

into a small part of dense subgraphs. We also find that the

number of meta-cliques is not so affected by the change of

k. This means that the meta-clique may be able to be used

as as index to characterize graphs.

4. Conclusion and Future Work

By restricting target on the combination of cliques, k-

plexes can be found efficiently for large k. We introduce the

concept of k-MCS and k-clique-graph, and propose an effi-

cient maximal k-MCS enumeration algorithm. Proposed al-

gorithm is shown to be powerful even for large-scale dataset.

We also introduce constraints on size of clique and bond

measure to analyze large network. The future work mainly

focuses on improving the performance of k-MCS enumer-

ator. We are also interested in combination pseudo-clique

models other than k-plex with k-MCS framework.
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