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Understanding the mechanisms and patterns of earthquake occurrence is of crucial importance for assessing and
mitigating the seismic risk. In this work we make an initial analysis of the viability of Evolutionary Computation
as a means of generating models for the occurrence of earthquakes. We use the Japan Meteorological Agency
(JMA) earthquake catalog. Our proposal is made in the context of the ”Collaboratory for the Study of Earthquake
Predictability” (CSEP), an international effort to standardize the study and testing of earthquake forecasting
models. As a starting point, we propose a methodology for encoding earthquake risk models in a Genetic Algorithm
as a real valued genome, where each allele corresponds to a bin in the forecast model. A fitness function based
on the log-likelihood of the evolved model against the earthquake occurrence data is used. Because of the high
dimensionality of the chromosome, special attention has to be paid to crossover, mutation and validation operators.
A careful discussion of these factors is conducted, and the results of our experiments are interpreted using a simple
geophysical model.

1. Introduction

Earthquakes pose a great risk for human society, in their

potential for large scale loss of life and destruction of infra-

structure. In the last decade, large earthquakes such as

Sumatra (2004), Kashmir (2005), Sichuan (2008) and To-

hoku (2011) caused terrible amounts of casualties. Thus, it

is important to understand the mechanisms behind the oc-

currence of Earthquakes. This knowledge may allow us to

create better models of seismic risk, which can be used for

mitigating damage through urban planning and emergency

preparedness.

Surprisingly enough, Evolutionary Computation has so

far played a limited role in the investigation of seismic

events. In this work, we try to increase this dialogue by

designing a simple Genetic Algorithm system applied to the

task of generating earthquake forecast models based on cat-

alog data. This task is based on the framework laid out by

the Collaboratory for the Study of Earthquake Predictabil-

ity (CSEP∗1). The CSEP is an international effort for the

standard and rigorous testing of predictability models [6].

The CSEP framework defines testing regions, periods, and

statistical testing methodologies for model comparison. We

use this information to orient our own experiments

To handle this task, our algorithm encodes a prediction

model in its genome, and evolves this genome based on the

value of the log-likelihood between the model and historical

data taken from the Japan Meteorologial Agency (JMA)

catalog. We compare the results obtained by the evolution-

ary algorithm with the Relative Intensity algorithm (RI),

which is often used as a benchmark for this problem [5].

Our results indicate that the GA found effective models
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when compared to the RI, specially when considering in-

land events.

Although our target problem is to generate a prediction

model, our ultimate goal is not to forecast the ocurrence of

earthquakes. Instead, we aim at using the creative power

of evolutionary computation to find new patterns in the

mechanics of seismic events. This work is a first step to-

wards that goal, a study case to highlight the considerations

needed using EC in this field.

1.1 Literature Review
In the international literature, there is very little mention

of the use of Genetic Algorithms for seismic research. For

forecasting models, Zhou and Zu [10] recently proposed a

combination of ANN and EC, but their system only fore-

casts the magnitude of earthquakes.

A somewhat more common approach is the use of EC for

estimating parameter values in seismological models. For

example, a few works use Evolutionary Computation to es-

timate the peak ground acceleration of seismically active

areas [4, 1, 3]. Another variation of the same theme is the

determination of Fault Model parameters of an earthquake

using EC [7, 2].

2. GA Prediction Model

In this system, an individual’s genome encodes a fore-

cast model, as defined in the CSEP framework. The model

consists of a series of bins, corresponding to locations in

a geographical grid. For each bin, an integer denotes the

number of expected events. In other words, each chromos-

some in the genome corresponds to the number of expected

earthquakes in one bin (location).

While encoding the individual’s genome in this way is

a simple and direct method, we identified two concerns:

1- Testing Regions in the CSEP framework contain over a

thousand bins, so the genome will be correspondingly large.
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2- Because of the very large number of parameters, a careful

design of evolutionary operators is necessary, to avoid early

overfitting.

2.1 Genome Representation
To avoid problems associated with integer values in the

cromossomes, the genome is a real valued array. Each el-

ement in the array corresponds to one bin (geographical

location) in the prediction model. An element xi takes a

value from [0.1). In the initial population, these values are

sampled from a uniform distribution.

In order to transform these real values into integer fore-

casts, as required by the CSEP model, we extract Poisson

deviates from the real values, using the following algorithm:

Algorithm 1 Obtain a Poisson deviate from a [0, 1) value

Parameters 0 ≤ x < 1, µ ≥ 0

L← exp (−µ), k ← 0, prob← 1

repeat

increment k

prob← prob ∗ x
until prob > L

return k

2.2 Fitness Function
The basis for the fitness function in our system is the Log

Likelihood between the forecast generated by an individual

and the observed earthquakes in the training data, as de-

scribed by Schorlemmer et al. [8]. Given an individual, Let

Λ = {λ1, λ2, . . . , λn|λi ∈ N} be the forecast generated by

this individual, with n bins. Let Ω = {ω1, ω2, . . . , ωn|ωi ∈
N} be the observed numbers of earthquakes for each bin i

in the training data (the catalog data). The log likelihood

between an individual’s forecast ΛX and the observed data

Ω is calculated as:

L(ΛX |Ω) =

n∑
i=0

−λi + ωi ∗ ln(λi)− ln(ωi!). (1)

However, in our early testing we observed that using a

simple log-likelihood as the fitness parameter caused the

population to degenerate into local optima. To avoid that,

we apply a time-slice operation to the fitness function. We

break up the training data into smaller slices, based on the

chronology of the earthquakes in the data. The duration of

each slice is the same as the duration of the test data.

Let’s consider an example: the target period for the fore-

cast is one year, from 1/1/2014 to 1/1/2015, and the train-

ing data is taken from the 10 year period between 1/1/2004

and 1/1/2014. To apply the time-slice log likelihood fitness

function, we divide the training data into ten 1-year slices,

from 2004 to 2005, 2005 to 2006, and so on. The final fit-

ness of the individual will be the minimum value from all

time slices.

2.3 Evolutionary Operators
Our system uses a regular generational genetic algorithm.

For selection, we use Elitism and Tournament selection. We

use a simple Uniform Crossover for the crossover operator.

If a gene’s value falls outside the [0, 1) boundary, it is trun-

cated to these limits. For the mutation operator, we sample

entirely new values from [0, 1) for each mutated chromo-

some.

Population Size 500

Generation Number 100

Elite Size 1

Tournament Size 50

Crossover Chance 0.9

Mutation Chance (individual) 0.8

Mutation Chance (chromosome) (genome size)−1

Table 1: Parameters for GAModel

The parameters used for the evolutionary computation

are described in Table 1. Because our focus is to show

the viability of Evolutionary Algorithms for this application

problem, we are not yet particularly concerned with the

convergence speed of the system.

3. Current Results

To evaluate the performance of our proposed system, we

execute a simulation experiment, and contrast its results

to those obtained by the Relative Intensity (RI) method,

and by an “unskilled” (random) forecast. For the three

methods, we compare the final values of their log likelihood,

and also the value for the ASS (Area Skill Score), which

measures the number of false positives and false negatives

in a forecast model [9].

The simulation is performed on catalog data made avail-

able by the Japan Meteorological Agency (JMA). It in-

cludes the time, magnitude, latitude, longitude and depth of

the hypocenter. We consider events with magnitude above

2.5 and depth less than 100km, recorded in the period from

2000 to 2013. We selected two regions to investigate: Kanto

and Northern Honshu. These areas are of interest because

they show a good mix of inland and off-shore quakes, that

make it easier to observe differing patterns in the methods.

For each area, we performed 8 simulations, with target pe-

riods of one year (2005 to 2012), and training periods of 5

years prior to the target period.

The results of the simulation experiments are summarized

in Table 2. In this table, Random refers to the Random

forecast, RI to the Relative Intensity algorithm, and GA to

the proposed evolutionary system.

The GA column reports the average for 20 runs, and the

standard deviation is reported in parenthesis. The p-value

column indicates the result of a one-sided T-test where the

alternate hypothesis is “The GA average is greater than the

RI result”.

We note from the table that in general the evolutionary

system has outperformed the RI in the Kanto area. In

particular, we note that the GA based model forms smaller

alarm clusters inland, while the RI marks large areas with

its predictions.
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Scenario Log Likelihood Area Skill Score

Random RI GA p-value Random RI GA p-value

Kanto 2005 -3716.86 -2263.4 -2253.2 (16.5) 0.006 0.38 0.24 0.24 (0.04) 0.78

2006 -3884.85 -2252.28 -2234.72 (14) 0.001 > 0.36 0.10 0.18 (0.01) 0.001 >

2007 -3838.9 -2113.84 -2108.95 (11.1) 0.03 0.36 0.15 0.19 (0.02) 0.001 >

2008 -3914.54 -2110.79 -2096.75 (11.8) 0.001 > 0.39 0.16 0.22 (0.3) 0.001 >

2009 -4211.28 -2487.88 -2482.88 (10.3) 0.02 0.36 0.09 0.14 (0.01) 0.001 >

2010 -4010.47 -2132.11 -2099.13 (16.3) 0.001 > 0.39 0.14 0.28 (0.03) 0.001 >

2011 -17657.43 -20083.09 -19983.73 (144.4) 0.003 0.35 0.07 0.08 (0.02) 0.14

2012 -10863.99 -3225.39 -4435.34 (248) 1 0.48 0.80 0.77 (0.01) 1

Northern Honshu 2005 -2552.61 -1067.38 -984.23 (84) 0.001 > 0.58 0.58 0.62 (0.01) 0.001 >

2006 -2613.1 -1044.72 -1073.03 (154) 0.78 0.52 0.50 0.42 (0.03) 1

2007 -2666.11 -1049.82 -999.64 (83.6) 0.007 0.51 0.51 0.41 (0.01) 1

2008 -5124.54 -5007.49 -4704.15 (131) 0.001 > 0.36 0.05 0.18 0.001 >

2009 -2737.47 -1049.22 -936.63 (60) 0.001 > 0.54 0.67 0.70 (0.01) 0.001 >

2010 -2714.68 -1045.03 -1077.95 (136) 0.85 0.53 0.66 0.57 1

2011 -3435.67 -2753.95 -2963.31 (88) 1 0.40 0.21 0.10 (0.01) 1

2012 -3623.22 -1326.52 -1186.1 (45.3) 0.001 > 0.47 0.62 0.70 (0.05) 0.001 >

Table 2: Simulation Experiment Results

(a) Northern Honshu 2009, RI (b) Northern Hoshu 2009, GA

(c) Kanto 2012, RI (d) Kanto 2012, GA

Figure 1: Two simulation results. Red squares indicate the intensity of the forecast. Blue circles indicate actual earthquakes

in the test data.
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Even then, both models miss some clusters in this area,

as indicated by their ASS value being under that of the

random model. The ASS value is useful to estimate how

much a forecast is suffering from over fitting - a low value

indicates that a larger alarm area is necessary to reduce the

miss rate of the forecast.

In the Northern Japan area we see a similar result. For

example, figures 1a and 1b show that the proposed system

is able to identify the two earthquake clusters more pre-

cisely than the RI, who casts a wide net, reducing forecast

accuracy. The ASS score for this area is higher, which indi-

cates both methods were able to learn the two “hot spots”

for seismic activity.

We can also see that the results changed wildly in the

aftermath of the 2011 M9 earthquake. That event caused

a sudden large spike in seismic activity in both areas, in-

cluding areas that never showed any seismic activity during

the training period. In the following scenario (2012), both

methods try to use this new data to reform their forecasts.

4. Discussion

Our initial objective was to test the feasibility of evolu-

tionary approaches for common problems in the study of

earthquakes. In this work, we presented a GA system for

the generation of prediction model based on catalog data.

While this system was very simple, it was able to perform

competitively with a well know geophysical model.

Although we were concerned with the number of param-

eters, and the complex nature of the problem, these initial

results indicate that there is promise in the use of Evolu-

tionary Computation for this application field. The mech-

anisms of earthquake generation are still not fully under-

stood, which motivates us to use self-adaptive methods such

as Genetic Algorithms.

That said, our initial approach has highlighted several

places where the system could be improved. Most impor-

tant, the current fitness function has several problems, such

as the fact that the quality of a bin does not take into

account information from neighboring bins, and a general

tendency of the system to overfit the data.

One way that we expect to mitigate that is by making the

algorithm aware of data locality. While the RI algorithm

uses a fixed smoothing pattern to make a high seismicity bin

increase the forecast of neighborhood bins, we plan to de-

velop a self-adaptive way of reaching the same goal. We are

also very interested in finding ways to add domain knowl-

edge into the system, such as the location of known faults,

in order to improve the forecast ability.
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