
The 28th Annual Conference of the Japanese Society for Artificial Intelligence, 2014

4C1-3

Fully Automated Cyclic Planning for Large-Scale Manufacturing Domains

Masataro Asai Alex Fukunaga

Department of General Systems Studies
Graduate School of Arts and Sciences

The University of Tokyo

In domains such as factory assembly, it is necessary to assemble many identical instances of a particular product.
While modern planners can generate assembly plans for single instances of a complex product, generating plans
to manufacture many instances of a product is beyond the capabilities of standard planners. We propose ACP, a
system which, given a model of a single instance of a product, automatically reformulates and solves the problem
as a cyclic planning problem.

1. Introduction

Domain-independent planning is a promising technology

for assembly planning in complex, modern robotic cell-

assembly systems consisting of multiple robot arms and

specialized devices that cooperate to assemble products

[Ochi 13]. In a small-scale, feasibility study, Ochi et al

showed that although standard domain-independent plan-

ners were capable of generating plans for assembling a single

instance of a complex product, generating plans for assem-

bling multiple instances of a product was quite challenging.

For example, generating plans to assemble 4-6 instances of

a relatively simple product in a 2-arm cell assembly system

pushed the limits of state-of-the-art domain-independent

planners. However, real-world cell-assembly applications re-

quire mass production of hundreds/thousands of instances

of a product.

Ochi et al proposed a (cyclic) “steady-state” (SS) model,

where the problem of generating a plan to manufacture

many instances of a product is reformulated as a cyclic

planning problem. In an instance of the general cyclic plan-

ning/scheduling problem [Draper 99], the start and end

states of the planning instance correspond to a “step for-

ward” in an assembly line, where partial products start at

some location/machine, and at the end of this “step”, (1)

all of the partial products have advanced forward in the as-

sembly line (2) one completed product exits the line, and

(3) assembly of a new, partial product has begun. Ochi et

al showed that when an appropriate, manually generated,

start/end state for this cyclic planning instance was pro-

vided to a planner, the resulting manufacturing process was

competitive with a human-generated, cyclic assembly plan.

However, identification of the “steady-state”, the crucial

component of this approach, was an entirely manual pro-

cess – the planner was only responsible for computing paths

between the cycle start/end points, so the overall process

was far from automated. This paper∗1 proposes ACP (Au-

Contact: guicho2.71828@gmail.com
∗1 Note that this is an extended abstract of an international

conference paper [Asai 14]. Since much of the details are omit-
ted due to space, please refer to the original paper for more
information. The camera-ready copy is going to be public at
http://guicho271828.github.io/publications.

図 1: Example CELL-ASSEMBLY instance: model2a.

tomated Cyclic Planner), which fully automates the cyclic

scheduling process for “mass manufacturing”, e.g., cell as-

sembly.

2. CELL-ASSEMBLY Domain

CELL-ASSEMBLY is a PDDL domain with STRIPS-style

actions, negative-preconditions, action costs, and a hierar-

chical type structure.

In the CELL-ASSEMBLY domain, the task is to complete

many products on an assembly line with robot arms. There

are a number of assembly tables and machines that per-

form specific jobs such as painting a product or tighten-

ing a screw. In each assembly table, various kinds of parts

are attached to a base, the core component of the prod-

uct. For example, a problem requires two kinds of parts,

part-a,part-b, to be attached to each one of base0,base1.

The final products look like base0/part-a/part-b and

base1/part-a/part-b .

Since the job dependencies (encoded as preconditions on

sequencing operators) specify the ordering of the assembly

process, planning the efficient movement of the robot arms

that move bases/parts through the assembly process is the

primary task left to the planner [Ochi 13].

3. Overview of ACP

ACP takes as input amanufacturing order, which consists

of a PDDL domain, a name of a single instance of a product,

a typed PDDL problem file specifying a model for it, and

N , the number of instances of the product to manufacture.

Currently, we support STRIPS-style actions, negative pre-

1

http://guicho271828.github.io/publications

The 28th Annual Conference of the Japanese Society for Artificial Intelligence, 2014

conditions and action costs. The output of ACP is a plan

for manufacturing N instances of the product.

ACP currently assumes the following:

• Single Product Type per Order: As an input, ACP takes

the order to assemble N instances of a particular prod-

uct. It does not handle the mixed orders in which mul-

tiple types of products are assembled simultaneously.

• Uniform Manufacturing Process: To fulfill the order,

all instances of product must be assembled in the exact

same order using the exact same machines.

• Indistinguishable Parts: Suppose a widget can be as-

sembled from a base and two parts, part1 and part2.

ACP assumes that instances of all components are in-

distinguishable, i.e., all the bases are identical to each

other, and all instances of part1 are identical to all other

instances of part1.

At a high level, ACP performs the following steps:

1. A standard domain-independent planner is used to find

a plan for manufacturing a single instance of the prod-

uct. This is the template plan which is used as the basis

for the cyclic plan.

2. ACP analyzes the template plan using the name of

the product as well as the original input PDDL. It

extracts the structures that are necessary in order to

specify start/end points for cyclic plans.

3. Based on the analysis in the previous step, a set of

candidate steady-state start/end points for cyclic plan-

ning are constructed. This large set of candidates are

pruned to a manageable number using some filtering

heuristics.

4. Each remaining candidate steady-state is evaluated by

solving a temporal problem called 1-cycle PDDL prob-

lem, which corresponds to 1 iteration of the cyclic plan,

with a standard temporal planner. The steady-state

resulting in the minimal makespan plan is saved.

5. A plan to generate N instances of the product is gen-

erated by sequencing (a) a path from the initial state

to the beginning of the first cycle (setup phase), (b)

N unrolled iterations of the best cyclic plan, and (c)

a path from the end of the last cycle to the final state

where all products have exited (cleanup phase).

3.1 Difficulties in Identifying Steady States
A candidate steady-state (SS) for cyclic plans in the

CELL-ASSEMBLY domain can be described in terms of the

current state of a set of (partially processed) bases e.g.

“there are three bases at a table, painter and machine, and

the second one has been painted.” The corresponding SS,

Si, is a set of partially grounded state variables, e.g., {(at
bi+2 table), (at bi+1 painter), (painted bi+1), (at bi machine)}. Si

corresponds to a 1-cycle PDDL problem Π(Si), where the

initial state and the goal condition includes Si and Si+1,

respectively.

Given such a representation, identifying a good SS is re-

duced to systematically enumerating and evaluating candi-

date states S, based on the quality (e.g. minimal makespan)

of the plan of Π(S). However, finding the best plan is not

trivial because both too large and too small number of prod-

ucts in the system results in inefficiency. Finding the candi-

date SS’s is also difficult. In principle, we could enumerate

all states reachable from some initial state and test whether

each such state is a feasible SS, but this is clearly imprac-

tical for any nontrivial problem instance.

3.2 Typed Predicates
In describing our methods, we use the following notation

of Typed Predicates. In PDDL domains with :typing require-

ments, a type can be assigned to each object. If no type is

specified, it is defaulted to a predefined type object, which

we abbreviate as * (don’t-care). We denote type (o) = τ

when o is of type τ , where o is either an object or a param-

eter (of predicates and actions). Types can have a hierar-

chy, such as “type A is a subtype of B”, which we denote

by A ≤τ B. In turn, B is a supertype of A. Also, we write

o1 ≤τ o2 , when type (o1) ≤τ type (o2) for objects o1 and

o2. A typed predicate is a predicate whose parameters are

specialized to some type, including *. We distinguish be-

tween two typed predicates which have the same name but

are specialized to the different types. For two typed predi-

cates p1 and p2 with the same name, we say p1 completely

specializes p2 when:

k = 1or 2, ⟨vki⟩ = params (pk) ,∀i; v1i ≤τ v2i

where params (p) is a parameters of a predicate p, and we

denote this by p1 ≤τ p2 . Note that we also use params (a) to

suggest the parameters of an action a. Also, (pred a b) means

an ungrounded typed predicate with parameters specialized

to type a,b .

3.3 Building and Analyzing a Plan Template
As stated in Sec. 3., ACP takes a PDDL domain, a type

τ , a number N and a problem. The problem may contain

n ≥ 1 instances of a single product, but n should be small so

that a good plan is obtained. We solve the problem with a

standard planner and get a plan P , which we call as a “plan

template”. We arbitrarily choose one object b0 of type τ in

the problem. The first major step is here: we identify the

“processing steps” of b0. This is formally defined as follows:

Definition 1 (Process). proc (b0, si), the /process/ for a

product b0 in i-th state si that appears during the execution

of P is the subset of propositions {f ∈ si | b0 ∈ params (f)}
in si such that every occurrence of b0 has been replaced

with a variable b.

Definition 2 (Whole Processes). The Whole Processes,

proc∗ (b0), of a product b0 in P is the sequence of proc (b0, si)

for all state si in P .

For example, the first step of Fig. 2 gives an example of

computing proc (b0, si) from some si. In effect, proc (b0, si)

removes all propositions from si that do not involve b0. By

applying this procedure to every step of the plan template,

2

The 28th Annual Conference of the Japanese Society for Artificial Intelligence, 2014

図 2: A state, its corresponding process and movement

we extract proc∗ (b0), which captures the flow of a base as

it progresses through the plan.

The next major step is to automatically extract things

that correspond to “places” and “movements”. In Fig. 2,

ACP must correctly automatically infer that “table1” is

a place, but “red” is not, but without access to human-

level understanding of natural language and commonsense

knowledge.

3.3.1 Owner/Lock Predicates

The key difference between “place” and “non-place” is the

implication of (or lack thereof) a particular kind of mutual

exclusion relationship. Note that (at b1 table1) is not just a

statement about the location of b1. It also implies something

about the occupancy of table1, i.e., if b1 is at table1, then it is

occupied by b1. In this case, it is a resource with capacity 1,

and can be treated as a mutex resource. If all “places” have

unit capacity, any time a product moves into a “place”, it

must grab a lock on that place. Otherwise, the model would

allow multiple products to occupy a single place.

Suppose we model a 2-D grid of cells that can be occupied

by objects. We need to infer that (2d x b y) with types (2d

coord base coord) and (occupied x y) with (occupied coord coord)

is a lock/owner pair (coord means “coordinate”.) Though

much of the detail is omitted here, essentially we checks

if (2d x b y) implies (occupied x y). It requires the following

conditions to hold in any actions:

1. When occupying a place, ensure the place is not in use,

and acquire the lock.

2. When leaving the place, release the lock.

For example, we check for any action such that (1) if it adds

(2d x b y), it has (not (occupied x y)) in the precondition and

it adds (occupied x y) at the same time, and (2) if it deletes

(2d x b y), it also deletes (occupied x y).

We formalize the above notion as follows. First, we as-

sume :negative-preconditions, because it makes the definitions

of “locks” and “owners” straightforward. Let the domain

D =
⟨
Pτ ,A

⟩
where Pτ is the set of typed predicates and

A the operator set. Also, o, µ ∈ Pτ , o = params (o) = ⟨oi⟩
and m = params (µ) = ⟨mj⟩ . Assume |o| ≥ |m|. Also, let

px mean an application of a predicate p to parameters x .

Definition 3 (Mapping of Parameters). ⟨o, µ⟩ has a map-

ping of parameters π when it is a one-to-one projection

π : j 7→ i s.t. ∀mj ∈ m; i = π(j) ⇒ oi ≤τ mj .

Definition 4 (Matching Criteria in Action Definition).

Assume ⟨o, µ⟩ has a mapping π. Let a an action, where

params (a) ⊇ x ⊇ y. Then ⟨ox, µy⟩ /match/ ⟨o, µ, π⟩ when:

∀j; (yj = xπ(j)) ∧ (yj ≤τ µj) and ∀i;xi ≤τ oi .

Definition 5 (Owner-Lock relationship). We say o and µ

are in a Owner-Lock relationship when ⟨o, µ⟩ has a mapping

π and, ∀a ∈ A, when ⟨ox, µy⟩ match ⟨o, µ, π⟩, both the

followings hold:

ox ∈ e+ (a) ⇒ µy ∈ e+ (a) ∧ µ̃y ∈ precond (a)

ox ∈ e− (a) ⇒ µy ∈ e− (a)

where e+ (a), e− (a) and precond (a) is the add effect, delete

effect and precondition of a, and µ̃ is a negative precondition

(not µ).

3.3.2 Movement

Returning to Fig. 2, we finally have a method to extract

only the “change of the place” or Movement in proc∗ (b) by

filtering the owners in each proc (b, si) and remove the un-

changed (set-equal) part. The figure shows that our method

correctly filters “non-places” out, such as finish and color.

The formal definition follows:

Definition 6 (Movement). Let O be the set of owner pred-

icates. For a product b in a template plan, for i-th state si
that appears during the execution of P , Movement M̄(b, si)

is:

M̄(b, si) = {f ∈ proc (b, si) | ∃o ∈ O; f ≤τ o}

Definition 7 (Whole Movements). We form Whole Move-

ments M̄∗(b) by enumerating all M̄(b, si) in a template plan

P and iteratively removing one of each pair of movements

that are adjacent and set-equal to each other.

The fact that (hold arm ?b) in Fig. 2 is a “location” may be

confusing: what happens if the arm moves? Would this not

imply that the position of ?b is also changed? The answer is

no – what matters is the resource usage in the system, and

not where the spatial location of the resource, e.g., changing

the arm position does not affect whether the gripper on the

arm is occupied by a base or not.

3.4 Enumerating and Filtering the Steady
States

Based on a sequence of Movements M̄∗, we can represent

a candidate SS as a set of indices {i0, i1, . . . ik−1} (See Fig.

3) where k is a number of partial products in a cycle. Each

number represents which set of owners in M̄∗ a partial prod-

uct has at the beginning of a cycle. Note that the indices

i0 = 0 and ik−1 =
∣∣M̄∗∣∣ represent the states “not yet in the

system” and “already out of the system”, respectively, and

the corresponding partial products occupy no locks. We call

this representation an MS3, which stands for “Movements-

Simplified Steady States”. We enumerate all feasible MS3

which satisfy the mutex constraints by adding a new num-

ber to the already checked MS3, initially {0}. There are

potentially 2|M̄
∗|−1 candidate SS’s (the first element i0 = 0

is fixed).

Brute-force evaluation of all candidates to identify the

best SS is impractical, both because the difficulty of each

1-cycle problem increases with k and because large 2|M̄
∗|−1

can be intractable. Therefore we applied some filtering

methods on these candidates.

3

The 28th Annual Conference of the Japanese Society for Artificial Intelligence, 2014

図 3: Example “Movements-Simplified Steady States”(MS3)

3.4.1 Mutex Focused Planning

Our main filtering method is called Mutex Focused Plan-

ning which removes all candidate steady-states from which

there is no path (plan) to the beginning of the next cycle,

due to unsatisfiable mutex constraints (e.g., deadlocks, re-

source starvation). For example, in the CELL-ASSEMBLY

domain, consider a candidate MS3 which puts products on

all possible locations. This results in deadlock, because all

arms, tables and machines are occupied and no base can

move.

There might be various methods to detect such dead-

locks but we chose a simple Dijkstra search to reduce

the implementation effort. In this search, each state is a

MS3, e.g., {0, 2, 5}. Its successor states can be obtained

by incrementing one of the elements of the MS3, i.e.,

{1, 2, 5} , {0, 3, 5} , {0, 2, 6}. However, some of these succes-

sor states may violate the mutex constraints and they

should be discarded.

When a SS is represented by MS3 {0, i1, . . . , ik−1} and

it has a path to
{
i1, . . . ik−1,

∣∣M̄∗∣∣} in the search space de-

scribed above, then we say that it has a mutex-feasible path

(MFP). We remove all SS’s with no MFP.

3.4.2 Filtering Heuristics

Even after eliminating all candidate SS’s without MFP,

we further reduce the set of candidates, based on the fact

that any point on a cyclic path can be a start of the path.

We instantiate and fully evaluate only the first instance of

such a group, discarding the rest of the members.

3.5 Planning the Cycles Based on Steady
States

After reducing the number of SS’s, we build and solve a

corresponding 1-cycle PDDL problem Π(S) for each SS S.

The initial state of Π(S) consists of predicates that either

(1) describe the initial state of each partial product in SS,

or (2) describe the global initial state. To construct (1), we

find corresponding proc (b, si) for each j in MS3 {. . . j . . .}
and ground it with a product of an arbitrary name. (2) is

excerpted from the initial state of the template problem

– only those predicates that do not have a product in its

arguments such as (at arm table1) are chosen. Additionally,

(3) appropriate lock predicates are added, such as (occu-

pied table1),(holding arm). The goal state construction is sim-

ilar and straightforward. We solve each Π(S) with a stan-

dard domain-independent planner, currently Fast Down-

ward [Helmert 06] with the LAMA2011 emulation config-

uration. We choose the minimal makespan plan, store the

corresponding SS and unroll the plan for an arbitrary num-

ber of products N .

In addition to the 1-cycle problem, we also need to plan

the setup that takes us from the initial state to the begin-

ning of the cycle, and a cleanup that takes us from the end

of the last cycle to the final state. These are straightforward

and not described here due to space. Finally, we concate-

nate them and get the whole solution of N products.

4. Conclusions

We described ACP, a domain-independent system for

generating cyclic plans for “manufacturing” domains where

the requirement is to generate many instances (up to thou-

sands of units) of a single product. Generating more than a

handful of instances of a product is beyond the capability

of standard domain-independent planners. ACP overcomes

this limitation with a novel, static domain analysis system

which performs fully automatic generation of a cyclic plan

for assembling many instances of a single product.

While motivated by a factory cell-assembly application,

ACP is domain-independent. Based on static analysis of the

input PDDL model and a plan template for assembling 1

instance of a product (generated using a standard domain-

independent planner), ACP automatically extracts all of

the required structure. Other than the product’s name in

the template problem, no labels/annotation to the PDDL

model are required, and no assumptions are made about the

names of the types or other objects. ACP automatically in-

fers how a (partially processed) product progresses through

the system, and how viable candidates for the start/end

states for cyclic planning can be generated.

Currently, there are significant constraints on the kinds of

cyclic plans that can be generated by ACP. ACP assumes

that all instances of the product progressing through the

manufacturing plant will be processed in the exact same

way, i.e., in the cyclic plan, each product instance is pro-

cessed in the exact same order and manner. In addition,

ACP currently does not allow mixed orders, e.g., “assemble

N1 instances of product P1 and N2 instances of product

P2”. Relaxing these restrictions could enable more efficient

usage of available resources and also make ACP applicable

to a broader class of applications, as well as allow further

exploitation of parallel actions.

参考文献
[Asai 14] Asai, M. and Fukunaga, A.: Fully Automated

Cyclic Planning for Large-Scale Manufacturing Domains,
in International Conference on Automated Planning and
Scheduling (2014)

[Draper 99] Draper, D., Jonsson, A., Clements, D., and
Joslin, D.: Cyclic Scheduling, in Proc. IJCAI (1999)

[Helmert 06] Helmert, M.: The Fast Downward Planning
System., J. Artif. Intell. Res.(JAIR), Vol. 26, pp. 191–
246 (2006)

[Ochi 13] Ochi, K., Fukunaga, A., Kondo, C., Maeda, M.,
Hasegawa, F., and Kawano, Y.: A Steady-State Model for
Automated Sequence Generation in a Robotic Assembly
System, SPARK 2013 (2013)

4

	Introduction
	CELL-ASSEMBLY Domain
	Overview of ACP
	Difficulties in Identifying Steady States
	Typed Predicates
	Building and Analyzing a Plan Template
	Owner/Lock Predicates
	Movement

	Enumerating and Filtering the Steady States
	Mutex Focused Planning
	Filtering Heuristics

	Planning the Cycles Based on Steady States

	Conclusions

