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Size complexity of BDD construction of Pseudo-Boolean constraints

in binary/mixed-radix base form
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An ROBDD with variable order representing a Pseudo-Boolean constraint has polynomial size if all coefficients
in the constraint are powers of two (Ab́ıo et al. 2012). This paper extends the result to descending variable-orders
and generalizes it to Pseudo-Boolean constraints having mixed-radix base coefficients (for ascending and descending
variable-orders). We implemented the proposed constructions and report on experimental results.

1. Introduction

Pseudo-Boolean (PB) constraints are conjunctions

of linear inequalities over Boolean variables. Sev-

eral kinds of solvers have been developed, see e.g.

http://www.cril.univ-artois.fr/PB12/ for a compari-

son. Typical approaches to solve PB constraints employ

Integer Linear Programming (restricted to 0-1 variables),

DPLL procedures (regarding PB constraints as generalized

clauses [6]), as well as transformations of PB constraints to

CNF (via adders, sorting networks, and BDDs [2, 5]).

In [1], Ab́ıo et al. have shown that a PB constraint where

all coefficients are powers of two admits a polynomial sized

ROBDD with ascending variable-order, i.e., variables hav-

ing smaller coefficients are placed closer to the root. Hence,

performing a binary expansion of the coefficients in a PB

constraint as a pre-processing step yields a polynomial sized

ROBDD. For example, a PB constraint 2x+3y ≤ 3 is trans-

formed to 2x+2y+ y′ ≤ 3 and y = y′ by binary expansion.

In this way, PB constraints can be converted into an equi-

satisfiable and polynomial sized CNF via ROBDDs.

Codish et al. proposed the notion of optimal-base de-

composition of a PB constraint, which is a minimal length

representation with a mixed-radix base expansion of coeffi-

cients [4].

This paper extends the result of [1] to ROBDDs with de-

scending variable-order and shows that the ROBDD from

a mixed-radix base expanded PB constraint is also of poly-

nomial size (for ascending and descending variable-orders).

We show experimental results of a MiniSat+ based solver,

in which we incorporated the proposed BDD construction.

2. PB constraints and ROBDDs

A PB constraint is of the form a1x1 + · · · + anxn ≤ K,

where the ai’s and K are integers such that ai > 0 and

the xi’s are Boolean variables. Since PB constraints resem-

ble Boolean functions, Binary Decision Diagrams (BDDs)

may represent PB constraints. Let C be the PB constraint
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Figure 1: ROBDD of 9x+ 21y + 23z ≤ 30

a1x1 + · · ·+ anxn ≤ K. We say [β, γ] is the interval of C if

for M ∈ [β, γ], i.e., β ≤ M ≤ γ, a1x1+ · · ·+anxn ≤ M and

C are equivalent (seen as Boolean functions) [1]. For a PB

constraint a1x1 + · · ·+ anxn ≤ K, a variable-order is called

ascending if xi < xj implies ai ≤ aj for all i, j. Similarly, it

is called descending if xi < xj implies ai ≥ aj .

Example 1 A BDD for 9x + 21y + 23z ≤ 30 with the as-

cending order x < y < z is shown in Figure 1. This is also

an ROBDD.

Here ROBDDs are a canonical representation for Boolean

functions under a given variable order [3]. For an ROBDD,

every pair of nodes represents different Boolean functions.

Note that a sub-graph of an ROBDD also is an ROBDD.

For example, the node in Figure 1 with selector variable y

represents 21y + 23z ≤ M for any M ∈ [23, 43]. The fol-

lowing propositions state properties used later on where

we assume that the ROBDD represents a PB constraint

a1x1 + · · ·+ anxn ≤ K.

Proposition 2 ([1]) If [β, γ] is the interval of a node ν in

an ROBDD with selector variable xi then:

(i) For each i ∈ {1, . . . , n} an assignment {xj = vj}nj=i

exists with aivi + · · ·+ anvn = β.

(ii) For each i ∈ {1, . . . , n} an assignment {xj = vj}i−1
j=1

exists with K − (a1v1 + a2v2 + · · ·+ ai−1vi−1) ∈ [β, γ].
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Proposition 3 ([1]) Let ν1 and ν2 be nodes of an ROBDD

with the same selector variable. If the intervals of ν1 and

ν2 overlap then ν1 = ν2.

Proposition 4 Let [β, γ] be the interval of a node of an

ROBDD. Then γ ≥ −1.

Proof Suppose γ < −1. Since M ≤ γ < −1 the node

is equivalent to the false node, which has the interval

(−∞,−1]. 2

3. BDD size of a binary expanded PB
constraint

In [1], Ab́ıo et al. have shown that for a PB constraint

where all coefficients are powers of two the ascending order

yields a polynomial sized ROBDD. Here we prove that this

also holds for the descending order. Note that this result is

a special case of Subsection 4.2.

In this section, we consider a PB constraint C of the

following form:

(δ0,1 · 20)x0,1 + · · ·+ (δ0,n · 20)x0,n

+ (δ1,1 · 21)x1,1 + · · ·+ (δ1,n · 21)x1,n

+ · · ·
+ (δm,1 · 2m)xm,1 + · · ·+ (δm,n · 2m)xm,n ≤ K,

where δi,r ∈ {0, 1} for all i and r. We consider ROBDDs

with descending order x0,1 > x0,2 > · · · > x0,n > x1,1 >

· · · > xm,n in this section.

Lemma 5 Let [β, γ] be the interval of a node with selector

variable xi,r. Then β < (n+ r)2i.

Proof Using Proposition 2(i), there must be an assignment

to the variables {x0,1, . . . , xi,r} such that

β = (δ0,1 · 20)x0,1 + (δ0,2 · 20)x0,2 + · · ·+ (δi,r · 2i)xi,r

≤ (δ0,12
0 + · · ·+ δ0,n2

0) + · · ·
+ (δi−1,12

i−1 + · · ·+ δi−1,n2
i−1)

+ (δi,12
i + · · ·+ δi,r2

i)

≤ n20 + · · ·+ n2i−1 + r2i.

Here 20 + 21 + · · ·+ 2i−1 = 2i − 1. Thus, β < n2i + r2i =

(n+ r)2i. 2

Corollary 6 The number of nodes with selector variable

xi,r is bounded by n + r + 2. In particular, the size of the

ROBDD belongs to O(n2m).

Proof Let ν1, ν2, . . . , νt be all the nodes with selector vari-

able xi,r. Let [βj , γj ] be the interval of νj . From Propo-

sition 3 we can assume, without loss of generality, that

β1 < β2 < · · · < βt. Then −1 ≤ γ1 < β2 < · · · < βt

by Proposition 4. Due to Proposition 2(ii), there is an as-

signment such that Kj := K − ((δm,n · 2m)vm,n + · · · +
(δi,r+1 · 2i)vi,r+1) ∈ [βj , γj ]. Clearly K1 < K2 < · · · < Kt.

Hence Kj+1 − Kj ≥ 2i. Since −1 ≤ γ1 < β2 ≤ K2 using

Lemma 5, it holds that 0 ≤ K2. Combining βt > Kt−1 >

Kt−2 + 2i ≥ K2 + (t − 3)2i ≥ (t − 3)2i with Lemma 5, we

get (n+ r)2i > βt > (t− 3)2i and hence n+ r + 2 ≥ t. 2

4. BDD size of a mixed-radix base ex-
panded PB constraint

A mixed-radix base is a sequence ⟨b1, . . . , bm⟩ of natural

numbers and used as a base coding of a number by a se-

quence of small numbers. For example, time and day uses

⟨60, 60, 24⟩, where the first number represents seconds in a

minute, the second one the minutes in an hour, and the last

is for the hours in a day. By using this base, 3610 seconds

are coded as 10 seconds, 0 minutes, and 1 hour.

Let ⟨b1, b2, . . . , bm⟩ be a mixed-radix base. We use Bi for

the product b1b2 · · · bi for 0 ≤ i ≤ m. Note that B0 = 1.

Using this notation, a sequence δ0, δ1, . . . , δm, which satis-

fies that 0 ≤ δi < bi+1 for all 0 ≤ i < m, represents a

number δ0B0 + δ1B1 + · · ·+ δmBm.

Example 7 Let ⟨b1, b2, b3, b4⟩ = ⟨3, 5, 2, 2⟩ be a mixed-

radix base. Then B0 = 1, B1 = 3, B2 = 15, B3 = 30, B4 =

60, and 54 is represented as the sequence 0, 3, 1, 1, 0 with

this base, because 0 · 1 + 3 · 3 + 1 · 15 + 1 · 30 + 0 · 60 = 54.

Throughout this section, we consider a base ⟨b1, . . . , bm⟩
and a PB constraint C′ of the following form:

(δ0,1 ·B0)x0,1 + · · ·+ (δ0,n ·B0)x0,n

+ (δ1,1 ·B1)x1,1 + · · ·+ (δ1,n ·B1)x1,n

+ · · ·
+ (δm,1 ·Bm)xm,1 + · · ·+ (δm,n ·Bm)xm,n ≤ K,

where 0 ≤ δi,r ≤ bi+1 for all i and r. For the simplicity of

the proofs, we assume that δm+1,1 = · · · = δm+1,n = 0 and

bm+1 = 1 +max{δm,1, . . . , δm,n}.

4.1 BDD size with an ascending order
In this section we consider an ROBDD of C′ with as-

cending order x0,1 < x0,2 < · · · < x0,n < x1,1 < · · · < xm,n.

We use bmax for the maximum number of bi’s, i.e., b
max =

max{b1, . . . , bm+1}.

Lemma 8 For all i ≤ m, let [β, γ] be the interval of a node

with selector variable xi,r. Then

(i) Bi divides β,

(ii) β ≤ K, and

(iii) K − ((r − 1)bmax + (n− r + 1))Bi < γ.

Proof By Proposition 2(i), β can be expressed as a sum

of coefficients all of which are multiples of Bi, thus Bi di-

vides β. Proposition 2(ii) gives an assignment to the vari-

ables {x0,1, . . . , xi,r} such that M ∈ [β, γ] where

M := K − ((δ0,1 ·B0)v0,1 + · · ·+ (δi,r−1 ·Bi)vi,r−1).

Thus β ≤ M ≤ K − (0 + · · ·+ 0) ≤ K, and

γ ≥ M

≥ K − ((δ0,1B0 + · · ·+ δ0,nB0) + · · ·
+ (δi−1,1Bi−1 + · · ·+ δi−1,nBi−1)

+ (δi,1Bi + · · ·+ δi,r−1Bi))
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Here δi,j ≤ bi+1 − 1 for any i, j. We have also (b1 − 1) +

(b2 − 1)b1 + · · · + (bi − 1)(bi−1 · · · b1) = (bi · · · b1) − 1, i.e.,

(b1 − 1)B0 + (b2 − 1)B1 + · · ·+ (bi − 1)Bi−1 < Bi. Thus,

γ ≥ K − (n(b1 − 1)B0 + · · ·+ n(bi − 1)Bi−1

+ (r − 1)(bi+1 − 1)Bi)

> K − (nBi + (r − 1)(bi+1 − 1)Bi)

= K − ((r − 1)bi+1 + (n+ r − 1))Bi

≥ K − ((r − 1)bmax + (n+ r − 1))Bi. 2

Corollary 9 The number of nodes with a selector variable

xi,r is bounded by (r − 1)bmax − n + r. In particular, the

size of the ROBDD belongs to O(n2m).

Proof Let ν1, ν2, . . . , νt be all the nodes with the selector

variable xi,r. Let [βj , γj ] be the interval of νj for 1 ≤ j ≤ t.

Since intervals are pairwise disjoint (Proposition 3), we have

β1 < β2 < · · · < βt. By Lemma 8(i), we get βj −βj−1 ≥ Bi

and in particular β2 ≤ βt − (t− 2)Bi. Combining this with

Lemma 8(ii) and (iii), we get K − ((r − 1)bmax + (n+ r −
1))Bi < γ1 ≤ β2 ≤ βt − (t − 2)Bi ≤ K − (t − 2)Bi. Hence

K − ((r − 1)bmax + (n + r − 1))Bi < K − (t − 2)Bi, i.e.,

((r − 1)bmax + (n + r − 1))Bi < (t − 2)Bi and hence (r −
1)bmax+(n+r−1) > t−2 which gives (r−1)bmax+n+r ≥ t.

2

4.2 BDD size with a descending order
In this section we consider an ROBDD of C′ with descen-

ding order x0,1 > x0,2 > · · · > x0,n > x1,1 > · · · > xm,n.

Lemma 10 Let [β, γ] be the interval of a node with a se-

lector variable xi,r. Then β < (n+ r(bmax − 1))Bi.

Proof Using Proposition 2(i), there must be an assignment

to the variables {x0,1, . . . , xi,r} such that

β = (δ0,1 ·B0)x0,1 + (δ0,2 ·B0)x0,2 + · · ·+ (δi,r ·Bi)xi,r

≤ (δ0,1B0 + · · ·+ δ0,nB0) + · · ·
+ (δi−1,1Bi−1 + · · ·+ δi−1,nBi−1)

+ (δi,1Bi + · · ·+ δi,rBi).

Here δi,j ≤ bi+1 − 1 for any i, j, and furthermore also

(b1 − 1)B0 + (b2 − 1)B1 + · · ·+ (bi − 1)Bi−1 < Bi. Thus,

β ≤ n(b1 − 1)B0 + · · ·+ n(bi − 1)Bi−1 + r(bi+1 − 1)Bi

< nBi + r(bi+1 − 1)Bi

≤ nBi + r(bmax − 1)Bi. 2

Corollary 11 The number of nodes with selector variables

xi,r is bounded by n + r(bmax − 1) + 2. In particular, the

size of the ROBDD belongs to O(n2m).

Proof Let ν1, ν2, . . . , νt be all the nodes with selector vari-

able xi,r. Let [βj , γj ] be the interval of νj . From Propo-

sition 3 we can assume, without loss of generality, that

β1 < β2 < · · · < βt. Then −1 ≤ γ1 < β2 < · · · < βt

by Proposition 4. Due to Proposition 2(ii), there is an as-

signment such that Kj := K − ((δm,n · Bm)vm,n + · · · +
(δi,r+1 · Bi)vi,r+1) ∈ [βj , γj ]. Clearly K1 < K2 < · · · < Kt.

Table 1: Number of solved problems

Expan./Order DEC OPT total
SMALL BIG SMALL

binary/ascending 66 19 77 162

binary/descending 66 19 78 163

mixed/ascending 66 23 75 164

mixed/descending 66 22 93 181

raw/ascending 66 25 92 183

raw/descending 67 36 108 211

MiniSat+ 64 20 81 165

MiniSat+ (BDD-only) 67 31 102 200

Hence Kj+1 − Kj ≥ Bi. Since −1 ≤ γ1 < β2 ≤ K2 using

Lemma 10, it holds that 0 ≤ K2. Combining βt > Kt−1 >

Kt−2 + Bi ≥ K2 + (t − 3)Bi ≥ (t − 3)Bi with Lemma 10,

we get (n + r(bmax − 1))Bi > βt > (t − 3)Bi and hence

n+ r(bmax − 1) + 2 ≥ t. 2

5. Implementation and experiments

We implemented our findings on top of Minisat+ [5] ver-

sion 1.0, resulting in the tool GPW. The major extensions

are summarized as follows:

• Minisat+ has a function to generate clauses via BDDs

constructed from each PB constraint. Thus we at-

tached intervals to the nodes of BDDs to reduce re-

dundant nodes.

• Binary/mixed-radix base expansion of coefficients be-

fore BDD construction. We use the optimal-base [4]

as a mixed-radix base for each constraint. Currently,

we use the function in Minisat+ for sorting networks

that minimizes the sum of digits in the expanded con-

straint, where prime numbers up to 17 are allowed for

the radices.

We performed experiments on a machine equipped

with dual Xeon W5590 (3.33GHz, 4core 8thread,

L2cache4*256KB, and L3cache 8MB) processor and 48GB

memory. We used MiniSat version 1.14 as underlying

solver. The PB benchmarks consist of 306 problems in

total; 81, 80, and 145 problems in DEC-SMALLINT-LIN,

OPT-BIGINT-LIN, and OPT-SMALLINT-LIN divisions of

Pseudo-Boolean Competition 2010, respectively.

Table 1 shows the number of problems that different

methods could solve within 600 seconds timeout. The

columns correspond to the divisions of problems. The first

six rows show the number of problems solved by GPW

where we pre-processed the PB constraints to binary or

mixed-radix base (first four rows) or did not pre-process

(rows five and six). The last two rows show the results for

MiniSat+, where the former uses the default strategy and

the latter the “BDD-only” strategy.

Figure 2 shows the total number of solved problems

within the timeout for different methods.

Ignoring divisions of problems, raw/descending (no pre-

processing and descending order) scores best. Descending

3



The 28th Annual Conference of the Japanese Society for Artificial Intelligence, 2014

Figure 2: Runtime for the solved problems

order is better than ascending. Compared with mixed-

radix/descending and raw/descending, the former method

is faster more than 10 seconds for 17 problems, none of

which are BIGINT problems. The latter is faster more than

10 seconds for 61 problems, 17 of which are BIGINT prob-

lems. No problems are solved by only the former method,

and 29 problems are solved by only the latter method.

All problems solved by binary/descending are also solved

by mixed-radix/descending. On the other hand, there are

8 problems solved by binary/ascending but not solved by

mixed-radix/ascending.

6. Concluding remarks

We have shown that the ROBDD for a PB constraint

whose coefficients are powers of two has polynomial size,

and this also holds in the case that each coefficient is ex-

panded by mixed-radix base.

Although the descending order without expansion is es-

sentially the same strategy as MiniSat+, the current im-

plementation works better than MiniSat+ with BDD-only

strategy. Possible reasons of the difference are as follows:

(1) The current implementation construct ROBDD by us-

ing intervals introduced by [1]. On the other hand,

MiniSat+ can reuse only some of nodes.

(2) The current implementation of intervals requires con-

straints to be of the shape a1x1 + · · · + anxn ≤ K.

On the other hand, MiniSat+ constructs a BDD from

K′ ≤ a1x1 + · · ·+ anxn ≤ K.

The current implementation does not allow to mix between

non-, binary, or mixed-radix base expansion for each con-

straint in a PB problem. Thus, allowing this may improve

the performance. We plan to tackle these issues as future

work.
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