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Application of a Continuous Time Structural ARMA Modeling

to analysis of a nuclear reactor
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For the safety of a nuclear reactor, understanding the unobserved mechanisms of the reactor is important. How-
ever, traditional approaches of the reactor analyses do not provide sufficient information on its physical mechanisms.
In this paper, we apply a multivariate Continuous time Structural Auto-Regressive Moving Average (CSARMA)
modeling approach to overcome this issue and analyze the nuclear reactor system using the mathematical models
derived by the approach.

1. Introduction

The nuclear reactor is a complex physical system with a

multiple processes. Its many structures and associated pa-

rameters cannot be directly observed because most of them

are intentional and the others are not observable for the

very high temperature and radiation levels inside and near

the reactor core. For understanding such mechanisms, we

need to have a mathematical model and its corresponding

parameters that precisely reflect the reactor processes. Such

model might further allow us to manage the nuclear reactor

more effectively and safely.

A continuous time linear multivariate Markov system is

frequently analyzed by ARMA modeling in discrete time

domain (DARMA) [Brockwell 1991]. Unfortunately, the

DARMA model is not canonical for such continuous time

system, i.e., not a unique representation of the system.

Thus we cannot identify the system’s structure and its as-

sociated parameters. A remedy to this problem is to use

a canonical expression of the multivariate DARMA model

under the discrete time approximation called a structural

ARMA (SARMA) model [Moneta 2010]. The SARMA

model represents a unique dependency structure among

variables of the objective continuous time system. How-

ever, most of the past SARMA approaches have limited

applicability, since they require some strong assumptions

for the model identification.

On the other hand, the processes of the continuous time

linear multivariate Markov system such as the nuclear reac-

tor are represented by a canonical continuous time ARMA

(CARMA) model consisting of the linear differential equa-

tions [Stamer 1996]. Based on relation between struc-

tures of the ARMA models in continuous and discrete time

domains, we have proposed a continuous time structural

autoregressive moving average (CSARMA) modeling ap-

proach by assuming that the system is continuous, Markov,

linear, stationary, controllable and observable [Demeshko
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2014]. We have already showed that this approach enables

highly generic identification of the canonical SARMA and

CARMA models from a DARMA model obtained from ob-

served multivariate time series data under the assumptions.

In this report, we present its application to the analysis on

the relation among the processes in a nuclear reactor. We

analyze the structural processes and its associated param-

eters of the impulse fast neutron research reactor IBR-2

[Pepyolyshev 1998] by using this method and the observed

reactor noise time series data.

This paper is structured as follows. Section 2 explains

the background of our CSARMA study. Section 3 explains

the description of the principles and the analysis scheme of

the CSARMA modeling. The CSARMA application to real

world nuclear reactor IBR-2 and its analysis are presented

in Section 4.

2. Background

The reactor processes are normally observed as multi-

variate time series data of reactor noise signals, sampled by

digital processing at appropriately fine discrete time steps.

These time series are usually analyzed by the traditional

reactor noise analysis methods based on the multivariate

DARMA modeling. It allows us to derive the information

on the influences among the processes in both time and

frequency domains. However, these methods have a draw-

back that they do not automatically reorganize the relations

among the variables into the relations among the reactor

processes. The main reason for this drawback is that the

DARMA model is not canonical for a continuous time linear

multivariate Markov system as follows.

The multivariate DARMA model shown in Eq.(1) is

known to be a generic representation of a multivariate linear

Markov system in discrete time domain [Brockwell 1991].

Y (t) =

p∑
j=1

ΦjY (t− j∆t) + U(t) +

q∑
j=1

ΘjU(t− j∆t), (1)

where Y (t) and U(t) are d-dimensional vectors of observed

variables and unobserved noise, respectively. Φj and Θj

are d × d autoregressive (AR) and moving average (MA)
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coefficient matrices. p and q are AR and MA model orders,

and ∆t is a sampling time interval.

Transforming Eq.(1) by a d × d regular matrix Q, we

obtain the following equivalent representation.

Y (t) =

p∑
j=1

ΦjY (t− j∆t) +QW (t) +

q∑
j=1

ΘjQW (t− j∆t),

(2)

where W (t) = Q−1U(t). Equation (2) can be further

rewritten as follows:

Y (t) =

p∑
j=0

ΨjY (t− j∆t) +W (t) +

q∑
j=1

ΩjW (t− j∆t), (3)

where Ψ0 = I − Q−1, Ψj = Q−1Φj and Ωj = Q−1ΘjQ

[Kawahara 2011]. From Eq.(2), the impulse response of the

model is known to totally depend on the choice of Q and

W (t). Hence, proper identification ofQ is needed to identify

the dependency structure of the processes in the objective

system.

When the objective system is a multivariate discrete time

linear Markov system, the matrix Ψ0, that represents an in-

stantaneous feedback effect of Y (t) on itself, should be zero.

Thus, Q is uniquely defined as I, and the DARMA model

is also uniquely defined. This uniqueness of the model is

called canonicality. Each equation in the canonical model

has bijective correspondence to each individual process in

the system.

However, in case that the objective system is a multi-

variate continuous time linear Markov system, where the

DARMA modeling is most frequently used, the DARMA

model is merely a discrete time approximation. If there are

no processes changing faster than the sampling time inter-

val ∆t in the objective system, Ψ0 must be zero similarly to

the discrete case, otherwise Ψ0 is non-zero and thus Q ̸= I.

The non-zero matrix Ψ0, i.e., Q ̸= I, implies the existence

of the very fast process dynamics in the objective contin-

uous time system. However, the DARMA model does not

contain any information on the choice of Q [Moneta 2010].

In this regard, the DARMA model of the multivariate con-

tinuous time linear Markov system is not canonical.

If we can identify a unique combination of Q and W (t) in

Eq.(3), it provides a canonical model. As this model with a

proper Q more precisely represents the dependency struc-

ture among the observed variables, it is called a Structural

Autoregressive Moving Average (SARMA) model [Moneta

2010, Kawahara 2011]. Because of the lack of the informa-

tion on the very fast processes of the system, Ψ0 (or Q) is

not readily derived from observed time series data. To fill

the information, past studies on SARMAmodeling [Mainas-

sara 2010, Kawahara 2011] and its autoregressive model

versions, Structural Vector Autoregressive (SVAR) model-

ing [Gottschalk 2001], used specific domain knowledge on

the system, which is not applicable to many practical prob-

lems including the reactor noise analysis. Therefore, a more

generic approach is required.

3. Principle of the CSARMA method

The CSARMA modeling approach is based on the re-

lations between the DARMA model, Eq.(1), the SARMA

model, Eq.(3) and the CARMA model shown as follows.

Y (p)(t) =

p−1∑
m=0

SmY (m)(t)+W (0)(t)+

q∑
m=1

RmW (m)(t), (4)

where Y (m)(t) and W (m)(t) are the m-th time derivatives

of Y (t)(= Y (0)(t)) and W (t)(= W (0)(t)), and Sm and Rm

are d × d autoregressive (AR) and moving average (MA)

coefficient matrices, respectively. This CARMA model is

known to be a canonical model of a multivariate, continuous

time and linear Markov system [Brockwell 1991, Stamer

1996] by the following reason. Equation (4) is rewritten

similarly to the SARMA model by introducing some regular

matrix P and a new noise vector E(t) as follows.

Y (p)(t) = AY (p)(t)+

p−1∑
m=0

S
′
mY (m)(t)+E(0)(t)+

q∑
m=1

R
′
mE(m)(t),

where E(t) = P−1W (t), A = I − P−1, S
′
m = P−1Sm and

R
′
m = P−1RmP . Since the CARMA model includes all

process dynamics, any extra feedback dynamics of Y (p)(t)

to itself does not exist. Therefore, A is 0, and thus P = I

which provides a unique CARMA model. Accordingly, the

CARMA model is canonical.

Since the CARMA and SARMA models are both canon-

ical and have bijective correspondence with an objective

system, these two models, Eq.(3) and Eq.(4), are explicitly

related by applying finite difference approximation scheme

named backward Euler formula up to the m-th derivative

as follows [Demeshko 2014].

S0 = ∆t−pI −
p−1∑
m=1

(−1)m

I −
q∑

k=1

(−1)k
q∑

j=k

j!

(j − k)!k!
Ωj

−1

×
p−1∑
j=m

j!

(j −m)!m!
Ψj + (−1)p+m−1∆t−p p!

(p−m)!m!
I

}
+(−1)p∆t−pΨ−1

p (I −Ψ0), (5)

Sm =

(−1)m∆tm−p

∆tp

I −
q∑

k=1

(−1)k
q∑

j=k

j!

(j − k)!k!
Ωj

−1

×
p−1∑
j=m

j!

(j −m)!m!
Ψj + (−1)p−1 p!

(p−m)!m!
I

}
, (6)

where 1 ≤ m ≤ p− 1, and

Rm = (−1)m∆tm

I −
q∑

k=1

(−1)k
q∑

j=k

j!

(j − k)!k!
Ωj

−1

×
q∑

j=m

j!

(j −m)!m!
Ωj , (7)
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where 1 ≤ m ≤ q.

On the other hand, the correspondences of the matrices

of the DARMA and the SARMA models are obtained by

comparing Eq.(1) and Eq.(3) as follows [Kawahara 2011]:

Ψj = (I −Ψ0)Φj ,

Ωj = (I −Ψ0)Θj(I −Ψ0)
−1. (8)

By substituting Eq.(8) into Eq.(5) we derive Ψ0 as follows.

Ψ0 = I −

(−1)p∆t−pΦ−1
p

(
q∑

j=1

Θj

j∑
k=1

(−1)k
j!

(j − k)!k!
− I

)
. (9)

Accordingly, the SARMA and the CARMA models are ob-

tained from a given DARMA model in case of continuous

time, Markov, linear, stationary, observable and control-

lable system.

The scheme of the CSARMA algorithm based on Eq.(5)-

(9) is presented in Fig.1. We firstly estimate a DARMA

model by applying some traditionally used methods such

as the Maximum Likelihood method [Shea 1987]. Then,

we obtain a SARMA model, Eq.(3), by deriving its pa-

rameter matrices from the matrices of the DARMA model

through Eq.(8)-(9). Finally, by using the relations between

the SARMA and the CARMA models presented in Eq.(5)-

(7), we estimate parameters of the CARMA model of the

system [Demeshko 2014].

Figure 1: The scheme of the CSARMA algorithm.

4. IBR-2 analysis results

In this section, we analyzed the reactor data measured

on IBR-2 [Pepyolyshev 1998] at Joint Institute of Nuclear

Research in Dubna, Russia. As shown in Fig.2, IBR-2 has a

special structure consisting of rotating main and additional

neutron reflectors that initiate power pulses. When the re-

flectors approach to the reactor core, they reflect the gener-

ated neutrons back to the core. This increases the number

of neutrons and more effectively activate the fission chain

process in the reactor core. Because these reflectors rotate

very fast, the activation of the chain reaction occurs in a

very short period and produces power pulses. The data set

Figure 2: The scheme of the IBR-2 nuclear reactor.

we used for our analysis contains the peak energy of power

pulses (Q) measured in thermal Wattage, axial deviations

of the main neutron reflector (XQ) and of the additional

neutron reflector (XA) measured in radian. The axial de-

viations of the reflectors are their angular deviations from

the vertical central line of the reactor core. The time series

of Q,XQ and XA has 8192 time steps and was measured

during the stationary operation period. Every variable of

the time series has been normalized to give a zero mean and

a unit standard deviation. Sampling frequency of the time

series data is equal to the frequency of the pulse operation

of IBR-2, which is 5 Hz [Pepyolyshev 1998].

As mentioned in a previous section, the CSARMA ap-

proach is applicable to an objective system, if the system

is continuous, Markov, linear, stationary, controllable and

observable. Since the generation process is well described

by the point-kinematics, the process generating the power

pulse by the neutron reflectors’ motions in IBR-2 is obvi-

ously continuous and Markov. The point-kinematics relat-

ing Q, XQ and XA is well approximated by a linear relation,

because the reactivity and the power Q induced by the two

reflectors are almost same over all power peaks and the de-

viations from their average levels at the peaks are small.

The process is stationary, since the time series are observed

under the stationary operation of the IBR-2. It is also con-

trollable and observable, since the observed output signal

Q is fully controlled by the observed motions XQ and XA

of the two neutron reflectors. Accordingly, all conditions

required for the application of our CSARMA modeling are

met in our analysis of the IBR-2 data set.

The process of the heat removal from the core and the

negative feedback of the core temperature to the power gen-

eration is approximately represented by a second order de-

lay process. Also, the sinusoidal periodic rotations of the

reflectors are approximated by a second order delay pro-

cess. Therefore, in our study we applied DARMA (p=2,

q=2) modeling and its Maximum Likelihood estimation to

the time series data set and further derived its SARMA

model using our CSARMA approach. The obtained results

are presented in Eq. (10)-(13).

Matrix Ψ0 of the SARMA model contains the most im-

portant structural information, which shows the fast effects
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among variables, i.e., the effects that happen within a sam-

pling period. We see significant values of (1, 2) and (1, 3)

elements of Ψ0 in Eq.(10), which represent the influences

of the main and the additional neutron reflectors’ axial de-

viations, XQ and XA, to the peak power, Q. This result

corresponds to the system dynamics of IBR-2, since both re-

flectors initiate the power pulse. In addition, the less effect

of the additional reflector is reflected to the smaller value

of its element. Further, we observe some influence of the

main reflector’s motion to the additional reflector’s at (3, 2)

element. Though the cause of this influence is not clear, the

voltage deriving the motor of the additional reflector could

be influenced by the motor operation of the main reflector

sharing an electricity power supply. We see that the other

elements of Ψ0 are relatively small, which means that there

is no impact from the power output to the deviations of

both neutron reflectors. The last also corresponds to the

reactor’s dynamics.

Ψ0 =

Q XQ XA 49.7402 150.2176 65.0670

1.2771 15.7391 16.4848

11.1788 204.5666 80.6094

 Q

XQ

XA

.
(10)

Equations (11) and (12) show Ψ1 of the SARMA model

and Φ1 of the DARMA model, respectively, which represent

the delayed effects among the variables. In the matrix Ψ1,

we see that the major effects between the variables are al-

most localized at (1, 2), (1, 3) and (3, 2) which is similar to

the structure of Ψ0 matrix. In addition, (1, 2) and (1, 3) el-

ements in Ψ1 are negative because of the negative feedback

of the peak power. This effect occurs as follows. Once the

neutron population is increased in the core by the reactor,

the core temperature is increased through the activation

of the nuclear fission chain reaction. The increase of the

temperature reduces the efficiency of the individual nuclear

fission reaction, and this suppresses the power generation.

These processes form the negative feedback. Element (3, 2)

has also a negative sign because of the oscillatory nature of

the power supply. These values correspond to the domain

knowledge on the reactor. However, Φ1 of the DARMA

model, where the fast and the delayed effects are not de-

composed, does not show any clear structure reflecting the

dynamics of IBR-2.

Ψ1 =

Q XQ XA 4.8445 −55.6610 −8.4650

−0.2408 −17.2771 −2.9954

−0.1421 −70.5501 −9.1673

 Q

XQ

XA

,
(11)

Φ1 =

Q XQ XA −0.1265 −0.0905 0.0074

−0.0029 −0.0932 −0.0400

−0.0270 1.1384 0.2169

 Q

XQ

XA

.
(12)

Equation (13) shows Ω1 of the SARMA model which rep-

resents the delayed effects from the noise components to

their original variables. Here, we observe large values at

(1, 2) and (3, 2) elements. However, they are not very sig-

nificant, since amplitudes, i.e., standard deviations, of the

noise components of XQ and XA are less than 30% of those

of the original variables.

Ω1 =

Q XQ XA −0.4183 3.5814 −0.1413

0.0106 0.3921 −0.0041

0.0677 4.5130 −0.5953

 Q

XQ

XA

.
(13)

5. Conclusion

We conclude that the application of CSARMA method

gives us the informative relations among variables which

reflect the physical structure of a nuclear reactor system.

Particularly, it provides information on the fast effects that

happen during a sampling period in the system. The last

became possible through mathematical reconstruction of

the SARMA model out of the DARMA model. Moreover,

CSARMA is a highly generic modeling approach, and it is

not limited to the fast neutron reactors, but can be applied

for other types of reactors.
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