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Real-time burst detection is an important topic in data stream analysis. An effective way to find burst events is using a 

sliding time-window to record the frequency of evens that happened in each slide interval. Although many burst detection 

methods have been conducted based on this idea, only a handful of them are suitable for real-time detection. In this paper, we 

propose a real-time burst detection system based on Kleinberg algorithm and Jubatus. It is able to detect 100 events’ burst 

whose arriving frequency is of several milliseconds. By deploying our proposal on Jubatus framework, 10x times larger 

numbers of events could be detected at the same accuracy with the same regular specs of PCs. According to our knowledge, 

this is the first system for scalable real-time burst detection. Experimental evaluations of our prototype system on tweets and 

financial data analysis demonstrate the feasibility and scalability of our proposal.  

 

1. Introduction 

In time-series data processing, one important indication of 

change is the presence of ‘burstiness’. There has been a great 

deal of research proposed for identifying and tracking burst. And 

recently, there is a growing requirement in real-time burst 

detection in lots of application scenarios, like monitoring facility 

sensor data, traffic control systems, and stock trading systems.  

A burst is defined as an abnormal aggregate in the stream in a 

short period of time. For example, the popular keywords 

extracted from document streams may be a valid indicator of 

emerging or changing topics of general interest; a volume surge 

in stock trading usually implies a strong buying/selling signal [1]. 

Burst detection problem is concerned with identification of such 

bursts, providing useful insights into the unusual events and in 

turn facilitating timely decision making. 

Intuitively, bursted period in a data stream can be defined as 

time intervals in which the data value exceeds a predetermined 

threshold value. Previous studies have presented different ways 

of determining the threshold [1, 2].  In practice, however, the use 

of predefined thresholds might make it difficult to detect burst 

activity. For example, the occurrences of a given feature may 

oscillate above or below the threshold in certain noisy data 

streams. Some of the bursts may be easily recognized as one long 

burst period by humans; however, threshold-based algorithms 

may identify them as several short period bursts or no burst at all. 

To alleviate this problem, Kleinberg [3] has developed a 

framework for doing this. It defines a word burst as an increase 

in the occurrence (arrival rate) of the word in a stream of text, 

and developing an automaton for tracking an optimized estimate 

of this rate, by an alternative state-based method using the 

Hidden Markov Model (HMM).  This type of method is a natural 

extension of the threshold-based methods with a more relaxed 

and variable notation of threshold. Kleinberg's burst model has 

inspired many subsequent efforts, since his traffic-based burst 

definition is intuitively appealing. 

However, because original Kleinberg is a batch based burst 

detection algorithm, the burst of a word is determined by 

analyzing its appearance frequency and calculating its burst state 

transfer cost in the whole stream text. This full-length calculation 

could be a pretty high overhead for real-time burst detection. 

Therefore, all the previous researches based on original 

Kleinberg will inherent its shortages in real-time applications.  

Our research is motivated to improve original Kleinberg 

detection solution for real-time burst detection. In addition, our 

approach considers the distributed parallel processing capability, 

and we also implemented our proposal on Jubatus framework [4], 

so as to support high scalability in multiple event detection.  

2. Previous Work 

2.1 Kleinberg’s Burst Model  

Motivated originally by a problem of representing bursts of 

email messages, Kleinberg's burst algorithm [3] models bursts 

with an infinite state automaton, in which each state represents a 

message arrival rate. The higher the state, the smaller the 

expected time gap between messages. `Word bursts' can then be 

defined as having arrival rates defined by the number of 

messages containing a particular word. Additionally, jumping 

from a lower state to a higher state has an associated cost, while 

the cost to drop down from a higher state to a lower state is 0. 

Formally, these states are determined by: 

For a time series z = {z t | t = 0, 1,… ,n}of inter-arrival gaps, 

find a state sequence q ={q it  | t = 0, 1,…, n} minimizing cost 

function: 

 

 

Where p is the probability of a state change, b(q) 

is the number of state transitions (changes in 

successive states) in q, and fi(z) = ai * e
– aiz

  is the 

exponential density function for gap values z with 

arrival rate ai. 
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By finding the optimal sequence of states minimizing the cost 

of transitions and the cost of differences between real arrival rate 

and the predicted emission rate, a time series of burst strengths is 

obtained. However, the complexity of the algorithm for finding 

this optimal sequence itself can be pretty large.  

2.2 Features Study of Kleinberg’s Burst Model  

In this sub-section, we focused on studying the features of 

Kleinberg model. We first compare it with the ‘event number 

threshold based’ burst detection solutions, such as [1, 2]; and the 

‘Change Finder’ solution, which is based on a widely used AR 

(Auto Regressive) model in real-time data analysis [5].    

For an easy understanding of the pros and cons in Kleinberg 

model, we conclude our comparison result in Table I and Table II. 

In Table I, the ‘time resolution’ means the time range within 

which period an event burst is detected; Kleinberg has the best 

result because all the others have to manually determine an 

appropriate time resolution based on the event’s nature. The 

‘threshold setting’ means the necessity in setting threshold value 

for a burst decision, the ‘easy of interpretation’ means whether 

the burst results are easy to understand, and the ‘sensitivity for 

small burst’ means the ability in detecting a small degree of burst. 

Because only the ‘event number based’ solutions require a 

predetermined threshold value, which often results in low 

detection accuracy especially for detecting small burst, it gets the 

worst results in these three features. The ‘accuracy of detected 

time’ means the latency in burst detection, and the ‘calculation 

overhead’ means the calculation cost during burst detection. 

Because ‘Change Finder’ has two sequential smoothing phases 

during burst calculation, it results the latency in detecting burst 

and a relatively high calculation cost. On the other hand, 

calculation cost in Kleinberg is even higher O(log(n) ^n), which 

cause the comparison results in these two features. The ‘strength 

of noise’ means the immunity from detecting noise bursts. 

‘Change Finder’ gets the best result because of its two phases 

smoothing processing. Kleinberg may also achieve different 

noise immunity by change its state transfer cost definition. 

 

 event number 
based 

Change 
Finder 

Klein
berg 

time resolution △ △ 〇 

threshold setting × 〇 〇 

easy of interpretation △ 〇 〇 

sensitivity for small burst × △ 〇 

accuracy of detected time 〇 △ 〇 

calculation overhead 〇 △ × 

strength of noise × 〇 △ 

Table I. Feature Comparisons with Rivals 

 

Kleinberg model [5] itself contains two methods for burst 

detection, the ‘Continuously Bursts’ (CB) and the ‘Enumerating 

Bursts’ (EB). We conclude their different features in Table II.  

In CB detection method, burst is detected once an event is 

happened. Its burst degree grows as its happening density 

increased. The density is defined as the happening time interval 

of a specified event after its previous occurring time. While in 

EB detection method, timeline is divided in to m windows, and 

burst detection is executed for the events happened in the latest 

time window that has just past. The burst degrees depend on the 

percentage of target events among all the events those happened 

in every past m windows.  

Because burst detection is executed for every occurrence of an 

event right after its happening, EB has the better burst time 

resolution. As a consequence, its calculation cost is O(log(n) ^n), 

which is much higher than that in CB O(2^m). In addition, for a 

specified observation time interval, the memory used by CB is 

un-predictable, while EB has a fixed memory usage that is 

proportional to the number of time windows. We conclude the 

CB and EB comparison in Table II. 

 

 CB EB 

time resolution 〇 × 

calculation overhead × 〇 

memory usage management × 〇 

multiple events detection × 〇 

Table II. Features of two Kleinberg methods 

3. Proposed Method 

As we have analyzed in Section 2, Kleinberg overwhelms 

other burst detection solutions in almost all the key performance 

features, except for its calculation overhead. Thus, it is important 

to optimize the calculation overhead so as to inherit its other 

features for large scale real-time burst detection applications. 

Note that, EB method has the lower burst degree calculation 

complexity, and fixed burst window size as well as its memory 

consumption during calculation. In this section, we focus on 

optimizing EB based Kleinberg model in this work, because its 

capability in utilizing a distribution processing framework for 

parallel processing and high scalability.  

3.1 Re-definition of Burst Level 

In original Kleinberg EB detection method, only two values 

are used to demonstrate a burst’s level (0: not bursted; 1: bursted), 

which is impossible for users to understand the intensity of a 

burst. On the other hand, there defines a burst’s weight for a 

continuous period of bursted batches. It is defined as the 

integration weight value of all the bursted batches, and is used in 

calculating the burst level of batches, which is: 

 

Σ( σ( 0, r_t, d_t ) - σ( 1, r_t, d_t ) ) 

 

To intuitively interpret detected burst, we re-define the burst 

levels from original (0, 1) with the weight value  

    

Maximum {(σ( 0, r_t, d_t ) - σ( 1, r_t, d_t )), 0} 

 

  This re-definition does not introduce new calculation cost 

into Kleinberg, and we will demonstrate that this new burst level 

may accurately illustrate burst status and improve the result 

interpretation ability of Kleinberg later in our experiments. 

3.2 Optimizing Burst Calculation Cost 

In original Kleinberg definition, to calculate an event’s burst 

level in a batch interval, it requires the event’s burst levels and 

occurrence percentages in all previous batches. This may become 
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a huge calculation overhead O(2^m) when handling endless data 

streams, where the number of previous batches m keeps 

increasing. To restrain the calculation cost for endless data 

stream, we introduce the concept of batch windows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. An Image of Batch Windows 

 

As shown in Figure 1, by setting a batch window for burst 

detection, burst weight calculation after a new batch interval is 

executed by calculating the burst status and status transfer 

overhead between the latest m adjacent batches in the window. 

For example, when batch window size is m = 5 as shown in 

Figure 1, the calculation overhead is limited to 2^5 steps. When 

time moves to the next batch interval, the burst window slides to 

discard the oldest batch and employ the latest batch for the new 

burst weight calculation when current batch interval finishes.   

Based on this batch window, we further propose a calculation 

cost reduction method. In this method, we skip the weight 

calculation for the oldest m’ batches by reusing their weight 

results calculated in previous detection. This method is able to 

reduce the detection latency for short interval burst detection 

application, and guarantees a relatively long batch window for 

higher noise strength. For the length limitation, please also refer 

the details in Figure 2, where m’=2.  

 

 

 

 

 

 

 

 

 

Figure 2. Cost Reduction Proposal 

We will demonstrate the effectiveness of this cost reduction 

proposal later in our experiments. 

4. Implementation on Jubatus 

Although our revised Kleinberg method greatly reduces the 

burst detection cost for a single event, a single server’s resource 

may easily be saturated when dealing with multiple events’ burst 

detection in parallel. Therefore, it is important to provide the 

revised method in a scalable framework, where multiple events’ 

detection workload are shared and processed on several servers. 

Jubatus [4] is a distributed processing framework and 

streaming machine learning library. It contains a scalable 

framework for real-time big data analysis. By using the sliding 

windows module and MIX mechanism that already implemented 

in Jubatus, we could easily deploy the proposed method onto 

Jubatus framework.  

 

 

 

 

 

 

 

 

 

 

Figure 3. Overview of Burst Detection Framework on Jubauts 

 

In our proposed framework, as shown in Figure 3, each server 

is in responsible for a set of keywords’ burst detections. These 

keyword sets are not intersected and determined by a global 

consistent hash table (HT) stored on each server. When a new 

keyword is required for burst detection monitoring, for example 

keywordC, it is broadcasted to all the servers and Server3 will 

take the responsibility for it according to the mapping result of 

HT on that server. Other servers will have the knowledge that 

keywordC is monitored on server3, and will transfer client query 

about keywordC’s burst status to Server3 if they don’t have that 

information. The detected burst results on each server will be 

MIX at some predefined intervals. After the mix, each server 

may answer all the client queries on any keywords with its local 

information. The query may still transferred to responsible server 

if client specifies the freshness of burst results. Note those data 

transfer amounts during mix are, ‘sending’: (number of 

responsible keywords) * windows_length * (size_of_int*2+ 

size_of_double); ‘receiving’: (number of all keywords ) * 

windows_length * (size_of_int*2+ size_of_double). 

In addition, the mixed burst information on each server 

provides an opportunity for deeper analysis of the correlated 

bursts by using the machine learning library contained in Jubatus, 

such as classification, outlier detection etc. This capability could 

be very important in extending the usage of burst detection. For 

example, burst detection could be used as data pre-

processing/clean before knowledge mining. 

Note that the zookeeper in our framework is in charge of 

servers (add/delete) management, primary mix server selection 

and HT maintenance. For the paper length limitation, we omit its 

description.  

5. Experiments 

5.1 Experimental environment  

Virtual server Intel Core i7 3.2GHz; Memory 2G 

Jubatus Client  1 virtual server  

Jubakeeper 1 virtual server 

Jubatus Server 1~5 virtual servers 

 
time 
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5.2 Experimental configurations and dataset 

Keywords number 10, 100, 1000     

Window sizes 10, 100, 1000     

Document added 1000 documents 

Batch size 10 document  

HPQ tick data  2013.6.1~2013.11.15; (1745828 trans) 

5.3 Experimental results 

In our first experiment, we examine the maximum documents 

adding speed, that all the keywords’ burst should have been 

detected before the next document is added. This speed depends 

on the documents broadcasting, grep counting and burst 

calculation time for all the keyword. We only provided a 

(windows=1000) result in Figure 4 for the space limitation. 

Results of other smaller window sizes show less document 

adding time due to the less calculation overhead, but they show 

the similar trending in performance change, and we found that  

1. The CPU overhead increases as the keywords number grows.  

2. The CPU overhead reduces as the number of servers grows. 

3. The document adding time increases as the number of servers 

grows (larger communication cost). 

In short conclusion, we verified that our proposed system 

supports real-time burst detection of target-events (keywords) in 

background-events (document) which happening at msecs time 

intervals. This interval shall meet the real-time requirement in 

most burst detection applications. And the interval may be 

further reduced by scaling out our distributed framework. 

Figure 4. Document adding time (window size =1000) 

 

  In our second experiment, we use the proposed system to 

detect stock price burst. Our first purpose is to verify the 

detection speed in proposed system fulfills the requirement in 

real practical usages, such as stock price burst detection. In 

addition, for deeper stock price analysis, such as similar burst 

classification, we also verified that using burst weight as price 

variation indicators leads to higher accuracy in classification 

result, compared with only using stock price.  

In this test, we use one Jubatus server configuration; (windows 

size = 400). Burst detection is executed after every tick price is 

added. We found the detection frequency of our system achieves 

120 times/sec. As far as we know, this speed overcomes almost 

all the companies’ tick frequency in Nasdaq and NYSE. 

We also did stock price variation classification test. In this test, 

we used a stream data similarity module [6] to classify the most 

similar price changes. We assume stock’s price will change in 

the same pattern when the same reason repeats. Although this 

naive assumption is not always the fact, it does appear in some 

typical cases. For example, we verified that after HP’s CEO M. 

Whitman affirmed the company growth, eg. 2013-06-12-10:45, 

2013-10-09-15:14 and 2013-10-10-09:52, HP’s shares were all 

increased over 5%. We found these related burst could be 

classified with work [6] successfully by using burst degree input, 

while failed by using the original stock price, as shown Figure 5.  

This test results demonstrate that burst detection could also be 

used as real-time data pre-processing solution, and provide a 

higher quality of data for deeper analysis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Stock Prices and their Burst Degrees 

6. Conclusion 

We proposed a real-time burst detection solution based on 

Kleinberg algorithm, and assessed the scalability and response 

time of a prototype based on Jubatus. We conclude our system 

fulfill most of real-time burst detection application requirement. 

In near future, we will open our source code under Jubatus 

project [4], and provide compound usage solutions by combining 

other machine learning methods in Jubatus.  
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