
The 28th Annual Conference of the Japanese Society for Artificial Intelligence, 2014

- 1 -

A Scalable Real-Time Burst Detection System based on Kleinberg Algorithm

†Min Luo, †Akihiro Yamanaka, †Masato Sawada, †Satoshi Oda, ‡Akihiro Shiozawa, ‡Naoto Hirano,
†Keitaro Horikawa

†Software Innovation Center
NTT R&D

‡ Mathematical Systems Inc.
NTT DATA

Real-time burst detection is an important topic in data stream analysis. An effective way to find burst events is using a

sliding time-window to record the frequency of evens that happened in each slide interval. Although many burst detection

methods have been conducted based on this idea, only a handful of them are suitable for real-time detection. In this paper, we

propose a real-time burst detection system based on Kleinberg algorithm and Jubatus. It is able to detect 100 events’ burst

whose arriving frequency is of several milliseconds. By deploying our proposal on Jubatus framework, 10x times larger

numbers of events could be detected at the same accuracy with the same regular specs of PCs. According to our knowledge,

this is the first system for scalable real-time burst detection. Experimental evaluations of our prototype system on tweets and

financial data analysis demonstrate the feasibility and scalability of our proposal.

1. Introduction

In time-series data processing, one important indication of

change is the presence of ‘burstiness’. There has been a great

deal of research proposed for identifying and tracking burst. And

recently, there is a growing requirement in real-time burst

detection in lots of application scenarios, like monitoring facility

sensor data, traffic control systems, and stock trading systems.

A burst is defined as an abnormal aggregate in the stream in a

short period of time. For example, the popular keywords

extracted from document streams may be a valid indicator of

emerging or changing topics of general interest; a volume surge

in stock trading usually implies a strong buying/selling signal [1].

Burst detection problem is concerned with identification of such

bursts, providing useful insights into the unusual events and in

turn facilitating timely decision making.

Intuitively, bursted period in a data stream can be defined as

time intervals in which the data value exceeds a predetermined

threshold value. Previous studies have presented different ways

of determining the threshold [1, 2]. In practice, however, the use

of predefined thresholds might make it difficult to detect burst

activity. For example, the occurrences of a given feature may

oscillate above or below the threshold in certain noisy data

streams. Some of the bursts may be easily recognized as one long

burst period by humans; however, threshold-based algorithms

may identify them as several short period bursts or no burst at all.

To alleviate this problem, Kleinberg [3] has developed a

framework for doing this. It defines a word burst as an increase

in the occurrence (arrival rate) of the word in a stream of text,

and developing an automaton for tracking an optimized estimate

of this rate, by an alternative state-based method using the

Hidden Markov Model (HMM). This type of method is a natural

extension of the threshold-based methods with a more relaxed

and variable notation of threshold. Kleinberg's burst model has

inspired many subsequent efforts, since his traffic-based burst

definition is intuitively appealing.

However, because original Kleinberg is a batch based burst

detection algorithm, the burst of a word is determined by

analyzing its appearance frequency and calculating its burst state

transfer cost in the whole stream text. This full-length calculation

could be a pretty high overhead for real-time burst detection.

Therefore, all the previous researches based on original

Kleinberg will inherent its shortages in real-time applications.

Our research is motivated to improve original Kleinberg

detection solution for real-time burst detection. In addition, our

approach considers the distributed parallel processing capability,

and we also implemented our proposal on Jubatus framework [4],

so as to support high scalability in multiple event detection.

2. Previous Work

2.1 Kleinberg’s Burst Model

Motivated originally by a problem of representing bursts of

email messages, Kleinberg's burst algorithm [3] models bursts

with an infinite state automaton, in which each state represents a

message arrival rate. The higher the state, the smaller the

expected time gap between messages. `Word bursts' can then be

defined as having arrival rates defined by the number of

messages containing a particular word. Additionally, jumping

from a lower state to a higher state has an associated cost, while

the cost to drop down from a higher state to a lower state is 0.

Formally, these states are determined by:

For a time series z = {z t | t = 0, 1,… ,n}of inter-arrival gaps,

find a state sequence q ={q it | t = 0, 1,…, n} minimizing cost

function:

Where p is the probability of a state change, b(q)

is the number of state transitions (changes in

successive states) in q, and fi(z) = ai * e
– aiz

 is the

exponential density function for gap values z with

arrival rate ai.

Contact: Min Luo, Software Innovation Center, NTT R&D,

3-9-11 Midoricho, Musashino-shi Tokyo, 180-8585, Japan,

luo.min@lab.ntt.co.jp, Tel: 0422-59-2746

2F3-04

mailto:luo.min@lab.ntt.co.jp

The 28th Annual Conference of the Japanese Society for Artificial Intelligence, 2014

- 2 -

By finding the optimal sequence of states minimizing the cost

of transitions and the cost of differences between real arrival rate

and the predicted emission rate, a time series of burst strengths is

obtained. However, the complexity of the algorithm for finding

this optimal sequence itself can be pretty large.

2.2 Features Study of Kleinberg’s Burst Model

In this sub-section, we focused on studying the features of

Kleinberg model. We first compare it with the ‘event number

threshold based’ burst detection solutions, such as [1, 2]; and the

‘Change Finder’ solution, which is based on a widely used AR

(Auto Regressive) model in real-time data analysis [5].

For an easy understanding of the pros and cons in Kleinberg

model, we conclude our comparison result in Table I and Table II.

In Table I, the ‘time resolution’ means the time range within

which period an event burst is detected; Kleinberg has the best

result because all the others have to manually determine an

appropriate time resolution based on the event’s nature. The

‘threshold setting’ means the necessity in setting threshold value

for a burst decision, the ‘easy of interpretation’ means whether

the burst results are easy to understand, and the ‘sensitivity for

small burst’ means the ability in detecting a small degree of burst.

Because only the ‘event number based’ solutions require a

predetermined threshold value, which often results in low

detection accuracy especially for detecting small burst, it gets the

worst results in these three features. The ‘accuracy of detected

time’ means the latency in burst detection, and the ‘calculation

overhead’ means the calculation cost during burst detection.

Because ‘Change Finder’ has two sequential smoothing phases

during burst calculation, it results the latency in detecting burst

and a relatively high calculation cost. On the other hand,

calculation cost in Kleinberg is even higher O(log(n) ^n), which

cause the comparison results in these two features. The ‘strength

of noise’ means the immunity from detecting noise bursts.

‘Change Finder’ gets the best result because of its two phases

smoothing processing. Kleinberg may also achieve different

noise immunity by change its state transfer cost definition.

 event number
based

Change
Finder

Klein
berg

time resolution △ △ 〇

threshold setting × 〇 〇

easy of interpretation △ 〇 〇

sensitivity for small burst × △ 〇

accuracy of detected time 〇 △ 〇

calculation overhead 〇 △ ×

strength of noise × 〇 △

Table I. Feature Comparisons with Rivals

Kleinberg model [5] itself contains two methods for burst

detection, the ‘Continuously Bursts’ (CB) and the ‘Enumerating

Bursts’ (EB). We conclude their different features in Table II.

In CB detection method, burst is detected once an event is

happened. Its burst degree grows as its happening density

increased. The density is defined as the happening time interval

of a specified event after its previous occurring time. While in

EB detection method, timeline is divided in to m windows, and

burst detection is executed for the events happened in the latest

time window that has just past. The burst degrees depend on the

percentage of target events among all the events those happened

in every past m windows.

Because burst detection is executed for every occurrence of an

event right after its happening, EB has the better burst time

resolution. As a consequence, its calculation cost is O(log(n) ^n),

which is much higher than that in CB O(2^m). In addition, for a

specified observation time interval, the memory used by CB is

un-predictable, while EB has a fixed memory usage that is

proportional to the number of time windows. We conclude the

CB and EB comparison in Table II.

 CB EB

time resolution 〇 ×

calculation overhead × 〇

memory usage management × 〇

multiple events detection × 〇

Table II. Features of two Kleinberg methods

3. Proposed Method

As we have analyzed in Section 2, Kleinberg overwhelms

other burst detection solutions in almost all the key performance

features, except for its calculation overhead. Thus, it is important

to optimize the calculation overhead so as to inherit its other

features for large scale real-time burst detection applications.

Note that, EB method has the lower burst degree calculation

complexity, and fixed burst window size as well as its memory

consumption during calculation. In this section, we focus on

optimizing EB based Kleinberg model in this work, because its

capability in utilizing a distribution processing framework for

parallel processing and high scalability.

3.1 Re-definition of Burst Level

In original Kleinberg EB detection method, only two values

are used to demonstrate a burst’s level (0: not bursted; 1: bursted),

which is impossible for users to understand the intensity of a

burst. On the other hand, there defines a burst’s weight for a

continuous period of bursted batches. It is defined as the

integration weight value of all the bursted batches, and is used in

calculating the burst level of batches, which is:

Σ(σ(0, r_t, d_t) - σ(1, r_t, d_t))

To intuitively interpret detected burst, we re-define the burst

levels from original (0, 1) with the weight value

Maximum {(σ(0, r_t, d_t) - σ(1, r_t, d_t)), 0}

 This re-definition does not introduce new calculation cost

into Kleinberg, and we will demonstrate that this new burst level

may accurately illustrate burst status and improve the result

interpretation ability of Kleinberg later in our experiments.

3.2 Optimizing Burst Calculation Cost

In original Kleinberg definition, to calculate an event’s burst

level in a batch interval, it requires the event’s burst levels and

occurrence percentages in all previous batches. This may become

The 28th Annual Conference of the Japanese Society for Artificial Intelligence, 2014

- 3 -

a huge calculation overhead O(2^m) when handling endless data

streams, where the number of previous batches m keeps

increasing. To restrain the calculation cost for endless data

stream, we introduce the concept of batch windows.

Figure 1. An Image of Batch Windows

As shown in Figure 1, by setting a batch window for burst

detection, burst weight calculation after a new batch interval is

executed by calculating the burst status and status transfer

overhead between the latest m adjacent batches in the window.

For example, when batch window size is m = 5 as shown in

Figure 1, the calculation overhead is limited to 2^5 steps. When

time moves to the next batch interval, the burst window slides to

discard the oldest batch and employ the latest batch for the new

burst weight calculation when current batch interval finishes.

Based on this batch window, we further propose a calculation

cost reduction method. In this method, we skip the weight

calculation for the oldest m’ batches by reusing their weight

results calculated in previous detection. This method is able to

reduce the detection latency for short interval burst detection

application, and guarantees a relatively long batch window for

higher noise strength. For the length limitation, please also refer

the details in Figure 2, where m’=2.

Figure 2. Cost Reduction Proposal

We will demonstrate the effectiveness of this cost reduction

proposal later in our experiments.

4. Implementation on Jubatus

Although our revised Kleinberg method greatly reduces the

burst detection cost for a single event, a single server’s resource

may easily be saturated when dealing with multiple events’ burst

detection in parallel. Therefore, it is important to provide the

revised method in a scalable framework, where multiple events’

detection workload are shared and processed on several servers.

Jubatus [4] is a distributed processing framework and

streaming machine learning library. It contains a scalable

framework for real-time big data analysis. By using the sliding

windows module and MIX mechanism that already implemented

in Jubatus, we could easily deploy the proposed method onto

Jubatus framework.

Figure 3. Overview of Burst Detection Framework on Jubauts

In our proposed framework, as shown in Figure 3, each server

is in responsible for a set of keywords’ burst detections. These

keyword sets are not intersected and determined by a global

consistent hash table (HT) stored on each server. When a new

keyword is required for burst detection monitoring, for example

keywordC, it is broadcasted to all the servers and Server3 will

take the responsibility for it according to the mapping result of

HT on that server. Other servers will have the knowledge that

keywordC is monitored on server3, and will transfer client query

about keywordC’s burst status to Server3 if they don’t have that

information. The detected burst results on each server will be

MIX at some predefined intervals. After the mix, each server

may answer all the client queries on any keywords with its local

information. The query may still transferred to responsible server

if client specifies the freshness of burst results. Note those data

transfer amounts during mix are, ‘sending’: (number of

responsible keywords) * windows_length * (size_of_int*2+

size_of_double); ‘receiving’: (number of all keywords) *

windows_length * (size_of_int*2+ size_of_double).

In addition, the mixed burst information on each server

provides an opportunity for deeper analysis of the correlated

bursts by using the machine learning library contained in Jubatus,

such as classification, outlier detection etc. This capability could

be very important in extending the usage of burst detection. For

example, burst detection could be used as data pre-

processing/clean before knowledge mining.

Note that the zookeeper in our framework is in charge of

servers (add/delete) management, primary mix server selection

and HT maintenance. For the paper length limitation, we omit its

description.

5. Experiments

5.1 Experimental environment

Virtual server Intel Core i7 3.2GHz; Memory 2G

Jubatus Client 1 virtual server

Jubakeeper 1 virtual server

Jubatus Server 1~5 virtual servers

time

The 28th Annual Conference of the Japanese Society for Artificial Intelligence, 2014

- 4 -

5.2 Experimental configurations and dataset

Keywords number 10, 100, 1000

Window sizes 10, 100, 1000

Document added 1000 documents

Batch size 10 document

HPQ tick data 2013.6.1~2013.11.15; (1745828 trans)

5.3 Experimental results

In our first experiment, we examine the maximum documents

adding speed, that all the keywords’ burst should have been

detected before the next document is added. This speed depends

on the documents broadcasting, grep counting and burst

calculation time for all the keyword. We only provided a

(windows=1000) result in Figure 4 for the space limitation.

Results of other smaller window sizes show less document

adding time due to the less calculation overhead, but they show

the similar trending in performance change, and we found that

1. The CPU overhead increases as the keywords number grows.

2. The CPU overhead reduces as the number of servers grows.

3. The document adding time increases as the number of servers

grows (larger communication cost).

In short conclusion, we verified that our proposed system

supports real-time burst detection of target-events (keywords) in

background-events (document) which happening at msecs time

intervals. This interval shall meet the real-time requirement in

most burst detection applications. And the interval may be

further reduced by scaling out our distributed framework.

Figure 4. Document adding time (window size =1000)

 In our second experiment, we use the proposed system to

detect stock price burst. Our first purpose is to verify the

detection speed in proposed system fulfills the requirement in

real practical usages, such as stock price burst detection. In

addition, for deeper stock price analysis, such as similar burst

classification, we also verified that using burst weight as price

variation indicators leads to higher accuracy in classification

result, compared with only using stock price.

In this test, we use one Jubatus server configuration; (windows

size = 400). Burst detection is executed after every tick price is

added. We found the detection frequency of our system achieves

120 times/sec. As far as we know, this speed overcomes almost

all the companies’ tick frequency in Nasdaq and NYSE.

We also did stock price variation classification test. In this test,

we used a stream data similarity module [6] to classify the most

similar price changes. We assume stock’s price will change in

the same pattern when the same reason repeats. Although this

naive assumption is not always the fact, it does appear in some

typical cases. For example, we verified that after HP’s CEO M.

Whitman affirmed the company growth, eg. 2013-06-12-10:45,

2013-10-09-15:14 and 2013-10-10-09:52, HP’s shares were all

increased over 5%. We found these related burst could be

classified with work [6] successfully by using burst degree input,

while failed by using the original stock price, as shown Figure 5.

This test results demonstrate that burst detection could also be

used as real-time data pre-processing solution, and provide a

higher quality of data for deeper analysis.

Figure 5. Stock Prices and their Burst Degrees

6. Conclusion

We proposed a real-time burst detection solution based on

Kleinberg algorithm, and assessed the scalability and response

time of a prototype based on Jubatus. We conclude our system

fulfill most of real-time burst detection application requirement.

In near future, we will open our source code under Jubatus

project [4], and provide compound usage solutions by combining

other machine learning methods in Jubatus.

References

 [1] M. Vlachos, K. Wu, S. Chen, and P. S. Yu. Fast burst

correlation of financial data. In Proc. of the 9th European Conf.

on Principles and Practice of Knowledge Discovery in Databases

(PKDD'05), Springer-Verlag, Berlin, Heidelberg, pp 368-379.

[2] M. Karnstedt, D. Klan, C. Pölitz, K. Sattler, and C. Franke,

Adaptive burst detection in a stream engine. In Proc. of the 2009

ACM Symposium on Applied Computing (SAC '09), pp 1511-

1515, New York, NY, USA.

[3] J. M. Kleinberg. Bursty and hierarchical structure in streams.

In Proc. of the 8th ACM SIGKDD Intel. Conf. on Knowledge

Discovery and Data Mining, July 23-26, 2002, Edmonton,

Alberta, Canada, pages 91-101, ACM, 2002.

[4] http://jubat.us/ja/; (latest accessed on 2014.3.10)

[5] 山西健司:データマイニングによる異常検知, 共立出版

[6] Y. Sakurai, C. Faloutsos, and M. Yamamuro. Stream

Monitoring under the Time Warping Distance. Proc. 23rd Int’l

Conf. Data Eng. (ICDE), 2007.

http://jubat.us/ja/

