
The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

3C4-IOS-4a-2

Resilience of Event-Driven Dynamic Systems

Nicolas Schwind∗1 Morgan Magnin∗2 Katsumi Inoue∗1

∗1 National Institute of Informatics ∗2 École Centrale de Nantes/IRCCyN

When designing and evaluating the performances of a system in terms of resilience, it is crucial to consider not
only its global configuration, but also its dynamics with regard to the environment. Indeed, our systems are subject
to uncontrollable events and their analysis requires to capture these events as well as the controlled events (i.e.,
the actions) in their global succession relationships. In this paper, we define a language that is expressive enough
to represent any narrative scheme, that is, any set of total preorders over any finite set of uncontrollable events.
We then formalize the problem of existence of an adequate strategy for a given narrative scheme, that consists in
adding some actions between the uncontrollable events (leading to a specific scenario) in a way that the system
satisfies some expected property. Then, each scenario is interpreted as a sequence of propositional formulae that
are updated each time an uncontrollable event or an action occurs. Lastly, we introduce some properties in order
to characterize the notion of resilience for such event-driven dynamic systems.

1. Introduction

1.1 Context

After the Great East Japan Earthquake of March 11,

2011, a large number of scientists in Japan have chosen to

dedicate their efforts to the design of innovative researches

able to face upstream and downstream such destructive

events. But this is not a concern with Japan only. The

disasters and threatens of the last two decades (climate

changes, 9/11 attacks, swine flu, . . .) have emphasized the

need for frameworks adapted to the modeling of large-scale

damaging events. More than just modeling, it is a mat-

ter of being able to assess a wide range of properties that

check the capabilities of the systems in terms of resistance,

robustness and recovery. In other words, the research in

the field of resilient systems and resilient properties is to

become a hot-topic at a worldwide scale.

The analysis towards resilient properties implies to con-

sider the general dynamics of the targeted systems. To

capture their general behavior, it then becomes crucial to

benefit from a concise definition of all possible dynamics

and to design an elegant yet relevant way to modify these

dynamics according a set of properties. That is why we

decided to focus on a logical based approach.

1.2 Logical representation of discrete-event

systems

First-order logics have already been revealed as very use-

ful for the analysis of large-scale, dynamics systems. In

[18], Péli and Masuch defined a fragment of organizational

ecology in first-order logic. Their approach takes its roots

in the observation that most theories in social sciences are

generally formulated in natural language, which leads to

many ambiguity and confusion, despite its expressiveness.

We feel the same need to state dynamics of a system and its

resilience in a formal framework suitable to the application

of mathematical techniques.

Contact: Nicolas Schwind, National Institute of Informat-

ics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430,
Japan, schwind@nii.ac.jp

In [16], Naylor proposed a first methodology based on

first-order logic for modeling discrete-event systems. Prac-

tically, he did not only address models with discrete events,

but also considered the elapsing of time (with time being

assimilated as a quantity evolving over R). He intendedly

focused on a representation of time through first-order log-

ics, and not through any higher-order logics. This raises

some practical issues he discussed. The results of these

works gave the basics for discrete-event systems to be mod-

eled through a first-order language, including variable and

constant symbols, predicate and function symbols, and logic

symbols. Naylor concluded by emphasizing the flexibility of

this approach, yet recognizing it suffers from its complex-

ity, making most models to be intractable. In addition, his

framework does not distinguish controllable and uncontrol-

lable events, needed for building a control theory. That is

why, in the following contribution, we will consider both

actions and events, the first being controllable, the second

uncontrollable. This means that the latter ones can be pre-

vented from occurring, when desired.

This work is also connected to the modeling of discrete-

event systems via rule-based models. Rule-based model-

ing has been an emerging approach for fifteen years, not

only in the field of discrete-event systems but also for bio-

chemical (more generally biological) systems. In [9], the au-

thors consider a rule-based formalism for modeling discrete-

events systems with faults. Contrary to classical models of

discrete-events systems, their model is of polynomial size in

the number of signals and faults. They even extend their

framework to incorporate delay faults, thus reasoning not

only on the chronology of events, but also on their chrono-

logical succession (incorporating quantitive timing informa-

tion), which implies to have more rules.

1.3 Resilience

Some recent work have considered resilience under the

prism of logics. But these frameworks are generally more

complex than the one we aim to define here. For instance,

in [4], Bursztein and Goubault-Larrecq consider a variant of

modal logics to assess the resilience of computer networks

1

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

to random faults. The originality of their approach lies in

the fact that they encompass time into their model (consid-

ering then timed game automata), thus define a variant of

the TATL logic [7] dedicated to the kind of properties useful

for resilience. But then model-checking of TATL logic suffer

from being EXPTIME-complete. Our approach is to estab-

lish a less expressive, but far more tractable framework for

resilient systems evaluation.

But what exactly is resilience? The resilience concept

encompasses a large range of notions, depending on the

research field and the authors. This is a topic of interest for

a wide set of areas. To pursue with our comparison with

ecological systems, the authors of [18] define resilience as a

less likely probability to die when resources are scarce.

In [13], Li et al. study resilience for the design of physi-

cal electronic circuits: they cite numerous defects that cir-

cuits must face, e.g. soft transient errors, aging and wear

out, environmental variations, . . . Their approach consists

in giving a formal framework for a resilient control synthesis

of electronic circuits. They thus define a resilience measure

associated to local repairs, meaning to each individual cir-

cuit component. Meanwhile, every repair is also associated

with a power cost. Consequently, the resilient control syn-

thesis problem consists in an optimization problem defined

as a 0 − 1 integer linear problem consisting in maximizing

the global resilience measure of the system while keeping

the total cost below a given (power overhead) budget.

Finally, when coming back to the field of discrete-events

systems [4], resilience is assimilated to the ability to sur-

vive attacks and faults on the one hand, recover from them

on the other hand. This means resilience should encapsu-

late two phases in the analysis of a system: beforehand,

the system is expected to resist to unexpected environment

pressure; afterwards, it is expected to recover from damages

at a reasonable cost. This is consistent with the definition

of resilience in [15], where Minami et al. cover these fea-

tures by the definition of resistance to disturbances on one

hand, recoverability from an undesired state on the other

hand.

Recently, this definition of resilience properties has been

refined in [20]. The authors focus on a family of four core

properties, that are:

• resistance, i.e. the ability for the system to absorb by

itself drastic modifications of the environment;

• recoverability, i.e. the ability to reach an admissible

state within a given time interval after an unwanted

(potentially damaging) modification of the environ-

ment;

• functionality, i.e. the ability to guarantee an average

quality of service for a given time interval;

• stabilizability, i.e. the ability to keep the cost for main-

taining the integrity of the system under a given bud-

get.

The existing work that is the most related to our objective

here is the seminal paper of Ramadge and Wonham about

the control of discrete-event systems [19]. As they aimed at

designing a framework in which some key properties could

be guaranteed by the addition of a controller, they needed

to partition the set of events into uncontrollable and con-

trollable events. They considered a logical representation of

discrete-events systems and modeled the behavior of such

a system as a prefix closed language over the event alpha-

bet. Then they introduced the notion of supervisor, which

associates every possible string of events with a control in-

put (that is a subset of events) to be applied. The control

synthesis problem is then to build a supervisor such that

some undesirable sequences of events cannot occur or some

desirable sequences are wished to occur.

Similar concepts to resilience, such as stabilizability [17]

and maintainability [3] have also been proposed by other

researchers within the structure of discrete-event systems.

1.4 Outline

With this contribution, our goal is to make a first con-

nection between this general control synthesis problem and

propositional logic so that we are able to assess the re-

silience of the system. In this paper, we provide a general

framework for resilience properties adapted to the context

of discrete-event systems. The originality of our approach

lies in the logical-based modeling framework we have de-

signed, and its relation with key resilience properties. Sec-

tion 2 defines our formal context and notations. In section

3, we introduce the formal language that to captures not

only exogenous events the system must endorse, but also

strategies that would allow to control the system to meet

specific behavior requirements. Then, in section 4, we give

the set of key properties that allow us to establish the vari-

ous criteria which characterize a resilient system. Section 5

summarizes the main ideas behind our formalism, discusses

its advantages and gives an overview of further work.

2. Preliminaries

Let X be a finite set. |X| denotes the number of ele-

ments in X. A total preorder over X (denoted (X,≤X),

or simply ≤X) is a binary relation over X that is reflexive

(∀x ∈ X,x ≤X x) and transitive (∀x, y, z ∈ X, if x ≤X y

and y ≤X z, then x ≤X z). Let ≤X be a total preorder.

=X denotes the corresponding equivalence relation, that is,

∀x, y, x =X y if and only if x ≤X y and y ≤X x, and <X the

corresponding strict ordering, that is, ∀x, y, x <X y if and

only if x ≤X y and not y ≤X x. X can be partitioned into

an ordered set of equivalent classes EC(X) = {X1, X2, . . . },

that is,

- X =
⋃

{Xi | Xi ∈ EC(X)},

- ∀Xi, Xj ∈ EC(X), i 6= j,Xi ∩Xj = ∅,

- ∀Xi ∈ EC(X),∀x, y ∈ Xi, x =X y, and

- ∀i, j ∈ {1, . . . , |EC(X)|}, i < j, if x ∈ Xi and y ∈ Xj then

x <X y.

Each equivalence class Xi is also called the ith class of

(X,≤X).

2

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

3. The event-based language LE

We consider a (limited) first-order logical setting, expres-

sive enough for representing and reasoning about a set of

possible narratives. Unformally, a narrative is a succes-

sion of events of environmental nature (i.e., uncontrollable

events), that is, a narrative is characterized by a total pre-

order over a given set E of uncontrollable events.

3.1 Syntax and semantics of LE

The syntax and the semantics of our representation lan-

guage, denoted LE , are defined as follows. The alphabet

of LE consists of a finite set of variables E = {e1, . . . , en}

(where each ei ∈ E represents an uncontrollable event), a

unary predicate symbol �, the usual logical connectives ¬

(not), ∧ (and), ∨ (or), the usual constant symbols ⊤ (true)

and ⊥ (false), and the punctuation symbols ‘(’ and ‘)’. An

atom is of the form (ei � ej), with ei, ej ∈ E. The lan-

guage LE is inductively defined as follows: every atom is a

formula, ⊤ and ⊥ are formulae and given two formulae α

and β, ¬α, α ∧ β and α ∨ β are formulae.

We now define the notion of narrative:

Definition 1 (Narrative) A narrative ω (over E) is a

total preorder (E,≤E).

The semantics of an atom of the form (ei � ej) for a given

narrative ω = (E,≤E) is defined as J(ei � ej)K = true if

and only if ei ≤E ej . The set of all possible narratives is

denoted Ω. A narrative is a model of a formula α (denoted

ω |= α) if and only if it makes the formula α true in the usual

truth functional way. The set of all models of a formula α

is denoted mod(α). In the following, a formula from LE is

also called a narrative scheme:

Definition 2 (Narrative scheme) A narrative scheme

is a formula from LE .

Example 1 Assume that two earthquakes e1, e2 are ex-

pected to occur independently. It is expected that e1 will

be followed by a tsunami e3 and that e2 will be be fol-

lowed by a tsunami e4. No other event is expected. This

information is represented by the narrative scheme α =

(e1 � e3) ∧ ¬(e3 � e1) ∧ (e2 � e4) ∧ ¬(e4 � e2) over

E = {e1, e2, e3, e4}.

The example above shows that one can represent a (pos-

sibly exponential-sized) set of narratives using a simple for-

mula from our representation language LE . Moreover, LE

is expressive enough to represent any possible set of narra-

tives over E, as it is stated in the following proposition:

Proposition 1 For any set S of narratives over E, there

exists a narrative scheme α such that mod(α) = S.

Proof: Let S = {ω1, . . . , ωm} be a set of narratives over E.

For every ωk ∈ S with ωk = (E,≤k
E), let αk the formula

form LE defined as

αk =
∧

{(ei � ej) | ei, ej ∈ E, ei ≤
k
E ej}.

We have mod(αk) = ωk. Now, let α be the formula from

LE defined as

α =
∨

{αk | k ∈ {1, . . . ,m}}.

We have mod(α) = S. �

Given a narrative scheme α, our motivation comes from

the “control” of the narratives from mod(α) so that they

satisfy some expected property. More precisely, we are

given a finite set of actions A (i.e., controllable events) that

can be inserted between the uncontrollable events from any

given narrative. A narrative completed by some actions is

called a scenario:

Definition 3 (Scenario) A scenario σ is a total preorder

over E ∪Ap where Ap ⊆ A.

Given a finite set of actions A, we denote scen(ω) the set

of all possible scenarios that “complete” the narrative ω.

Formally, for every narrative ω = (E,≤E),

scen(ω) = {(E ∪Ap,≤E∪Ap
) | Ap ⊆ A,∀ei, ej ∈ E,

ei ≤E ej ⇐⇒ ei ≤E∪Ap
ej ,∀ei ∈ E,∀ai ∈ Ap, ai 6= ei}.

Example 1 (continued) Consider again the narrative

scheme α from our running example. The narrative ω =

e1 <E e2 =E e3 <E e4 is a model of α. Consider the

set A = {a1, a2, a3} of actions. Then the total preorder

σ = e1 <E∪Ap
a1 <E∪Ap

e2 =E∪Ap
e3 <E∪Ap

a2 <E∪Ap
e4

over E ∪Ap where Ap = {a1, a2}, represents a scenario re-

sulting from a “strategy” applied on ω. That is, we have

σ ∈ scen(ω).

We formally define the notion of strategy within a set of

actions A:

Definition 4 (Strategy) Given a set A of actions, a

strategy within A is a mapping strat that associates every

narrative ω ∈ Ω with a scenario from scen(ω).

Not every strategy can be realized in such event-driven

dynamic systems. Indeed, some of them should be dis-

carded, as it is shown in the following example:

Example 1 (continued) From our running example,

consider again the narrative ω = e1 <E e2 =E e3 <E e4

that is a model of the narrative scheme α, and the addi-

tional narrative ω′ = e1 <E e2 <E e3 =E e4 that is also a

model of α. Consider the strategy within A that associates

with the narratives ω and ω′ the scenarios over E∪A′
p with

A′
p = {a1} defined as follows:

{

strat(ω) = e1 <E∪A′

p
a1 <E∪A′

p
e2 =E∪A′

p
e3 <E∪A′

p
e4,

strat(ω′) = e1 <E∪A′

p
e2 <E∪A′

p
a1 <E∪A′

p
e3 =E∪A′

p
e4.

This strategy cannot be realized. Indeed, for the narrative

ω, strat considers to apply the action a1 just after the oc-

curence of the event e3, and a1 should then be followed by

the specific sequence e2 =E∪A′

p
e3 <E∪A′

p
e4 of uncontrol-

lable events (i.e., after the action a1, the uncontrollable

3

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

events e2 and e3 occur at the same time). On the other

hand, for the narrative ω′, strat considers to apply the ac-

tion a1 after the occurence of the uncontrollable event e2,

that does not occur anymore at the same time as the uncon-

trollable event e3.

The problem here is that, in the practical case, after the

occurrence of the uncontrollable event e3, one should not be

able to guess which narrative from {ω, ω′} will actually cor-

respond to the factual run, while here, applying the action a1

just after e1 discards the narrative ω′ from a possible future

situation. This is an undesirable behavior for a strategy, as

the actions are only supposed to prevent the system from an

undesirable state or repair it, while they are not supposed to

rule the ordering of the uncontrolled events occuring next to

these actions. An example of a well-behaved strategy strat′

with respect to the narratives ω, ω′ is defined as follows:

{

strat′(ω) = e1 <E∪A′

p
e2 =E∪A′

p
e3 <E∪A′

p
a1 <E∪A′

p
e4,

strat′(ω′) = e1 <E∪A′

p
e2 <E∪A′

p
a1 <E∪A′

p
e3 =E∪A′

p
e4.

Before we formally characterize which are the well-

behaved strategies (i.e., the realizable ones), we introduce

some preliminary notions.

Definition 5 (Strong completion) Given two total pre-

orders (S,≤S) and (S′,≤S′), we say that (S′,≤S′) strongly

completes (S,≤S) if S ⊆ S′ and for every x, y ∈ S, x ≤S y

if and only if x ≤S′ y.

Example 1 (continued) The scenario σ = e1 <E∪A′

p

e2 =E∪A′

p
e3 <E∪A′

p
a1 <E∪A′

p
e4 strongly completes the

narrative ω = e1 <E e2 =E e3 <E e4.

Definition 6 (Weak completion) Given two total pre-

orders (S,≤S) and (S′,≤S′), we say that (S′,≤S′) weakly

completes (S,≤S) if (S′,≤S′) strongly completes (S ∩

S′,≤S∩S′), where (S ∩ S′,≤S∩S′) is strongly completed by

(S,≤S).

Example 1 (continued) The narrative ω = e1 <E

e2 =E e3 <E e4 weakly completes the scenario ω =

e1 <E∪A′

p
e2 =E∪A′

p
e3 <E∪A′

p
a1.

Definition 7 (Partial run) Given two total preorders

(S,≤S) and (S′,≤S′), (S,≤S) is said to be a partial run

of (S′,≤S′) if (S′,≤S′) strongly completes (S,≤S) and for

every x ∈ S′ and every y ∈ S \ S′, we have x <S y.

The set of all partial runs of a given total preorder (S,≤S)

is denoted Partials((S,≤S)).

Example 1 (continued) σp = e1 <E∪A′

p
e2 =E∪A′

p
e3

is a partial run of the scenario σ = e1 <E∪A′

p
e2 =E∪A′

p

e3 <E∪A′

p
a1 <E∪A′

p
e4.

We are now ready to define the notion of realizable strat-

egy.

Definition 8 (Realizable strategy) A strategy strat is

said to be realizable if for every partial run σp ∈
⋃

{Partials(strat(ω)) | ω ∈ Ω}, for every narrative ω ∈ Ω

that weakly completes σp, the scenario strat(ω) strongly

completes σp.

Intuitively, for every partial run σp induced from a strat-

egy, every narrative that completes it (i.e., every possible

future that has begun as described by σp) should be also

considered in the strategy. That is, for each narrative ω that

weakly completes σp there must exist a scenario induced

from the strategy that begins in the same way as described

by σp and that strongly completes ω. Therefore, in the

following we shall restrict ourselves to realizable strategies.

We are then interested in the following (generic) problem:

Problem 1 Given a narrative scheme α over E, a set

of actions A and a property P , does there exist a realiz-

able strategy strat within A such that each scenario from
⋃

{strat(ω) | ω |= α} satisfies P?

The next section defines a simple class of event-driven dy-

namic systems that take advantage of the narrative schemes

from LE defined in the previous section. In addition, we will

introduce some specific properties related to the resilience

of such event-driven dynamic systems with the objective of

concretizing the above problem.

4. Resilience of event-based dynamic

systems using propositional logic

4.1 Dynamic systems

This section introduces a formalism that defines an event-

driven dynamic system in a simple way. In addition to

the language LE, we consider here a propositional language

LPROP defined from a finite set of propositional variables

PROP that represent the entities which specify the system

(i.e., the components of the system). An interpretation is

a mapping from PROP to {0, 1}. The set of all interpre-

tations is denoted W. An interpretation I is a model of a

formula φ ∈ LPROP , denoted I |= φ if and only if it makes

it true in the usual truth functional way. mod(φ) denotes

the set of models of formula φ ∈ LPROP . A formula from

LPROP is said to be consistent if there exists a model of this

formula. Two formulae from φ, φ′ from LPROP are said to

be equivalent, denoted φ ≡ φ′ if mod(φ) = mod(φ′).

Definition 9 (Dynamic System) A dynamic system

DS is a tuple 〈φ0, intcost, α,A, actioncost, f, ⋄, dist〉,

where:

• φ0 is a formula from LPROP representing the initial

system specifications of DS;

• intcost is an interpretation cost function, that is, a

mapping from A to R
+ that represents the cost of each

interpretation from W;

• α is a narrative scheme from LE;

• A is a finite set of actions;

• actioncost is an action cost function, that is, a map-

ping from A to R
+ that represents the cost of each

action from A; for simplicity in the rest, we consider

that actioncost is a mapping from E ∪ A to R
+ such

that for every ei ∈ E, actioncost(ei) = 0;

4

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

• f is a mapping associating every uncontrollable event

and every action from E ∪ A with a formula from

LPROP ;

• ⋄ is an (update) operator that associates every pair of

formulae φ, φ′ from LPROP with a propositional for-

mulae denoted φ ⋄φ′ which represents the update of φ

by φ′;

• dist is a transitional cost between interpretations, that

is a premetric, i.e., dist is a mapping from W ×W to

R
+ such that for every interpretation I, dist(I, I) = 0.

From now on, we are given a dynamic system DS. DS

associates with every scenario from
⋃

{scen(ω) | ω |= α}

a path of systems specifications, also called systems path

(defined below). Each system of a given systems path is

associated with a formula from LPROP describing the con-

straints inherent to the system at a given time within the

scenario. Then, for a given formula φ from LPROP associ-

ated with a system from a systems path, each model I of

φ represents a specific configuration of the system specified

by φ. That is to say, such a model I can also be viewed as

a specific state of the system at a given time within a given

scenario. Moreover, I is associated with a cost specified

by intcost(I) that allows us to evaluate the quality of the

state represented by I . That is, intcost provides a way to

discriminate the states of a given system from each other in

terms of “quality”. The use of the transitional cost function

dist will be explained later in the paper.

Given a scenario σ, let us denote σi the ith class of σ ∗1:

Definition 10 (Systems path) Let σ be a scenario from
⋃

{scen(ω) | ω |= α}. The systems path associated with

σ, denoted SP (σ) is the sequence (φ0, φ1, . . .) of formulae

from LPROP such that for every φi ∈ SP (σ), i > 0,

φi =

{

φi−1 ⋄
∧

{f(x) | x ∈ σi} if σi ⊆ E,

φi−1 ⋄
∨

{f(x) | x ∈ σi} otherwise (if σi ⊆ A).

For the sake of clarity, we also write a systems path SP (σ)

as follows:

(φ0

σ1−→ φ1

σ2−→ φ2

σ3−→ . . .).

Intuitively, given a specific scenario σ we build the asso-

ciated systems path (φ0, φ1, . . .) as follows: we consider φ0

as the initial systems specifications of the dynamic system,

and then we simulate a “run” of σ. We encounter first ei-

ther a set of uncontrollable events, or a set of actions. In the

former case, we define the formula from LPROP describing

the next system φ1 as the update of φ0 by the conjunction

of all formulae associated (by f) with the encountered un-

controllable events; in the latter case, the next system φ1 is

defined as the update of φ0 by the disjunction of all formu-

lae associated (by f) with the encountered actions. Indeed,

it is natural to consider that a set of uncontrollable events

are interpreted conjunctively since the constraints they rep-

resent should be considered together. On the other hand, a

∗1 Please note that each equivalent class of a scenario is com-
posed either of uncontrollable events, or of actions only.

set of actions are interpreted disjunctively since they should

be designed to relax the constraints of the system.

We now focus on the behaviour that should be adopted by

the operator ⋄ that is used to update the previous systems

specifications by either the conjunction of formulae associ-

ated with the encountered events (in case of uncontrollable

events), or the disjunction of them (in case of controllable

ones). Updating a propositional formula by an other propo-

sitional formula has been topic that has been a widely stud-

ied topic these past 25 years [1, 12, 10, 11]. The operation

of update consists in bringing the systems specifications up-

to-date when the world described by them changes. That

is a convenient type of operation in our framework, since

we consider that the systems specifications evolve by the

occurence of some events ∗2. The expected behaviour for

update operators is captured by the following set of proper-

ties, usually referred as the KM postulates in the literature

[10, 11]:

Definition 11 (Update operator) An operator ⋄ that

associates every propositional formula φ,φ′ with a propo-

sitional formula φ ⋄ φ′ is an update operator if and only if

for every formula φ, φ1, φ2, φ
′, φ′

1, φ
′
2, it satisfies the follow-

ing postulates:

(U1) φ ⋄ φ′ |= φ′;

(U2) If φ |= φ′, then φ ⋄ φ′ ≡ φ;

(U3) If φ is consistent and φ′ is consistent,

then φ ⋄ φ′ is consistent;

(U4) If φ1 ≡ φ2 and φ′
1 ≡ φ′

2, then φ1 ⋄ φ
′
1 ≡ φ2 ⋄ φ

′
2;

(U5) (φ ⋄ φ′
1) ∧ φ′

2 |= φ ⋄ (φ′
1 ∧ φ′

2);

(U6) If (φ ⋄ φ′
1) |= φ′

2 and (φ ⋄ φ′
2) |= φ′

1,

then φ ⋄ φ′
1 ≡ φ ⋄ φ′

2;

(U7) If mod(φ) = 1,

then (φ ⋄ φ′
1) ∧ (φ ⋄ φ′

2) |= φ ⋄ (φ′
1 ∨ φ′

2);

(U8) (φ1 ∨ φ2) ⋄ φ
′ ≡ (φ1 ⋄ φ

′) ∨ (φ2 ⋄ φ
′).

For instance, the postulate (U1) requires that the models

of the propositional formula resulting from the update of

φ by φ′ should also be models of φ′ (that is, a postulate

of success). The postulate (U8) expresses the fact that

updating a propositional formula by an other one is made

in a model-wise fashion. We refer the reader to [10, 11] for

more details about the rationale of these postulates.

Update operators include the drastic update operator ⋄D
which is defined for every propositional formula φ, φ′ as:

φ ⋄D φ
′ ≡

{

φ if φ |= φ′,

φ′ otherwise.

∗2 In comparison, revising a propositional formula by an other
one [2] is more appropriated in the context where we are ob-
taining new information about a static world, i.e., when the
new information does not describe a change by the occurence
of an action or uncontrollable event, but instead represents
some information that describes the same, static system, and
that is more accurate.

5

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

More parsimonious update operators can be considered,

for instance, the Forbus operator ⋄F [5] which is defined

as follows: let dH the Hamming distance between inter-

pretations, that is, the number of atom values that differ

between two given interpretations. Then ⋄F is defined for

every propositional formula φ, φ′, as

φ ⋄F φ
′ ≡

∨

ω′|=φ

{ω |= φ
′ | dH(ω, ω′) is minimal}.

Many such update operators can be defined, and for our

dynamic systems any update operator ⋄ can be used, as far

as it is an update operator in the sense of Definition 11.

We now introduce the definition of models path, that de-

pends on a specific systems path:

Definition 12 (Models path) Given a systems path

sp = (φ0, φ1, . . .), a models path of sp is a sequence

(I0, I1, . . .) such that for every k ∈ {0, 1, . . . }, Ik |= φk.

A models sub-path sp′ of sp is a subsequence (Ia, . . . , Ib) of

sp, with a ≤ b.

We recall that each interpretation Ik from a models path

of a given systems path represents a specific configuration

of the systems specifications given by φk, that is, Ik |= φk.

Stated otherwise, each interpretation from a models path

represents a specific state of the system at a given time

within a given scenario σ, where SP (σ) is the systems path

under consideration.

4.2 Resilience of event-based dynamic systems

We are now ready to introduce the properties of interest

with respect to resilience into our framework.

4.2.1 Consistency

We propose a first property that we believe is mandatory

for dynamic systems, that is, the property of consistency

of a dynamic system. This property is introduced on sys-

tems path first, and will be extended to dynamic systems

straightforwardly. Intuitively, a systems path is consistent

if it is always possible to define the state of the system all

allong the systems path, that is, if one can always config-

ure the system all along its life in a given scenario. This

property can be viewed as the counterpart in our framework

of a widely accepted key feature of resilience, that is, that

it should always be possible to maintain the system’s core

purpose and integrity in the face of dramatically changed

circumstances.

Definition 13 (Consistent systems path / scenario)

A systems path sp = (φ0, φ1, . . .) is said to be consistent if

every formula appearing in sp is consistent.

A scenario σ is said to be consistent if SP (σ) is a consistent

systems path.

Example 1 (continued) Consider again the scenario

from our running example, that is the scenario σ =

e1 <E∪Ap
a1 <E∪Ap

e2 =E∪Ap
e3 <E∪Ap

a2 <E∪Ap
e4

over E ∪ Ap where Ap = {a1, a2}. Let PROP = {a, b},

φ0 = a ∨ b, and f be defined as follows:

f(e1) = a ∧ b, f(e2) = ¬a, f(e3) = a,

f(e4) = a ∧ ¬b, f(a1) = b, f(a2) = a ∨ b.

Assume that the update operator under consideration in DS

is the drastic operator ⋄D. Then the systems path SP (σ) is

defined as the following sequence of formulae from LPROP :

(a ∨ b
e1−→ a ∧ b

a1−→ ¬a ∨ ¬b
e2,e3−−−→ ⊥

a2−→ ⊥
e4−→ ⊥).

The above example puts in light a scenario where the

dynamic system faces dramatically changed circumstances

that correspond to the occurence of events e2 and e3 simul-

taneously. One can see that whatever happens after the

simultaneous occurence of e2 and e3, since f(e2) ∧ f(e3)

is an inconsistent formula, the next system in the systems

path is necessarily associated with an inconsistent formula.

Indeed, the postulate (U1) required to be satisfied by any

update operator ⋄ demands that the models of the proposi-

tional formula resulting from the update of any formula by

an inconsistent one should be inconsistent. By recurrence,

all the following systems in the systems path are necessarily

associated with inconsistent formulae. This kind of situa-

tion represents the case where, for instance, several disas-

ters occur at the same time and the dynamic system is not

able to recover from the damages (that is to say, one cannot

configure the system anymore in the remaining part of the

studied scenario), Moreoever, it can be easily seen that the

consistency of a scenario (w.r.t. Definition 13) is indepen-

dent from the actions that are inserted into the underlying

narrative. That is, a scenario σ is inconsistent if and only

if the narrative that it completes (i.e., the narrative ω such

that σ ∈ scen(ω)) is also inconsistent. We are now ready

to extend the property of consistency to dynamic systems:

Definition 14 (Consistent dynamic system) A dy-

namic system DS = 〈φ0, intcost, α, A, actioncost, f, ⋄, dist〉

is said to be consistent if φ0 is consistent and each narrative

from mod(α) is consistent.

We introduce now some additional properties that we

consider as relevant for the characterization of resilient dy-

namic systems. They are somewhat similar to the prop-

erties proposed in [20], some of them being actually their

direct counterpart. These properties are first introduced

on models paths, and then will be naturally extended to

systems paths and dynamic systems.

4.2.2 Resistance

Resistance is the ability for a dynamic system to absorb

by itself drastic modifications of the environment.

Definition 15 (Resistance) Given a non-negative real

number l, a models path mp = (I0, I1, . . .) is said to be

l-resistant if for each k ∈ {0, 1, . . . }, intcost(Ik) ≤ l.

Intuitively, a models path is l-resistant if the cost of each

one of its configurations is kept under the threshold l.

4.2.3 Recoverability

Recoverability is the ability for a dynamic system to reach

an admissible state within a given total amount of action

cost after an unwanted (potentially damaging) modification

of the environment.

6

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

Definition 16 (Recoverability) Le p, c be two non-

negative real numbers, and let mp = (I0, I1, . . .) be a mod-

els path of a systems path sp = (φ0, φ1, . . .) associated

with a scenario σ. mp is said to be 〈p, c〉-recoverable

if for each one of its models sub-paths (Ia, . . . , Ib) such

that for every k ∈ {a, . . . , b}, intcost(Ik) > p, we have
∑b

k=a
actioncost(σa+1) ≤ c.

Intuitively, c represents the total amount of cost (i.e.,

the sum of costs of each action applied between systems

specifications of sp for which the configurations in mp have

a cost above p) that is allowed for a 〈p, c〉-recoverable models

path to get back to a “safe” state (that is, to get back to a

configuration whose cost is under p).

This notion of recoverability slightly differs from the one

proposed in [20]. Indeed, in [20] the authors proposed a no-

tion of 〈p, q〉-recoverability, where p, q are both non-negative

real numbers and q represents the total amount of extra

cost of the interpretations (i.e., costs above p) that is al-

lowed for a 〈p, q〉-recoverable models path to get back to a

“safe” state. This cumulative extra cost is different from

ours in the sense that in our definition, we consider the to-

tal amount of action costs. This choice is motivated by the

fact that in [20], the dynamics of the system is driven by

time which is supposed to be regular, while in our frame-

work the dynamics of the system is event-driven; in conse-

quence, since the time between events is not assumed here

to be regular, summing the extra costs of each interpreta-

tion in a models path would have no more sense.

4.2.4 Stabilizability

Stabilizability is the ability for a dynamic system to avoid

undergoing changes that are associated with high transi-

tional costs. Here, we use the premetric dist specified in

the dynamic system. dist is used to represent a transitional

cost function over interpretations that stands for passing

from a state to an other one. This transitional cost is of

different nature compared to the cost intcost(I) associated

with every interpretation I (see [20] for more details about

the notion of transitional cost between interpretations). For

instance, dist can be defined as the Hamming distance be-

tween interpretations (that is, the number of atom values

that differ between two given interpretations), as it is an

appropriate choice, e.g., in the context of dynamic SAT

problems with decision change costs [8, 6].

Definition 17 (Stabilizability) Given a non-negative

real number s, a models path mp = (I0, I1, . . .) is said to be

s-stabilizable if for each k ∈ {1, 2, . . . }, dist(Ik−1, Ik) ≤ s.

4.2.5 Resilience

We are now ready to extend the properties of resistance,

recoverability and stabilizability to systems paths, scenarios

and dynamic systems.

Definition 18 (Resilient systems path / scenario)

Let l, p, c, s be four non-negative real numbers. A systems

path is said to be 〈l, p, c, s〉-resilient if it admits a models

path that is l-resistant, 〈p, c〉-recoverable and s-stabilizable.

A scenario is said to be 〈l, p, c, s〉-resilient if SP (σ) is a

〈l, p, c, s〉-resilient systems path.

Definition 19 (Resilient dynamic system)

Let l, p, c, s be four non-negative real numbers. A dynamic

system DS = 〈φ0, intcost, α, A, actioncost, f, ⋄, dist〉 is said

to be 〈l, p, c, s〉-resilient if there exists a realizable strategy

within A such that each scenario from
⋃

{strat(ω) | ω |= α}

is 〈l, p, c, s〉-resilient.

We can now express in a simple way the main problem

of interest in this paper (presented in a generic way in Sec-

tion 3.):

Problem 2 Given a dynamic system DS and four non-

negative real number l, p, c, s, is DS 〈l, p, c, s〉-resilient?

This (decision) problem is expected to be computation-

ally hard to solve in the general case. This challenging

question will be investigated as a further work.

5. Conclusion

In order to design systems that are able to face drastic

destroying environment changes, the study of event-driven

dynamic systems and their associated resilience properties

is of primary importance. This challenging modeling issue

must consider multiple-scale systems, inducing a potentially

intractable complexity. That is why, in this paper, we have

defined a concise logical-based approach to describe sys-

tems behaviors and their environment. We have first in-

troduced an event-based language allowing to represent the

dynamic modifications of the system and its environment.

In line with the control theory framework of discrete-event

systems, we have encompassed the distinction between un-

controllable and controllable events (the latter ones being

called actions) in the core of our formalism. We have also

integrated the notions of quality of a system and cost to

perform some controllable actions: the first one reports the

core concept of quality of service, this means the key factor

that may be damaged (or repaired) by events (or actions);

the second one illustrates the natural concept that some ac-

tions may be more expensive (or cheaper) than other ones.

We have discussed the integration of actions, events and

updating features in the context of dynamic systems, then

defined the associated resilience properties. These proper-

ties, based on resistance, recoverability and stabilizability,

are consistent with the state-of-the-art as summarized in

the introduction. They cover not only the general robust-

ness of the system, but also its qualitative reactivity. In

this paper, we have given a taste about how our framework

behaves in the context of various toy examples. Further

work now consist in applying this framework to a real-life

case-study and illustrating the merits of this formalization

to analyze large-scale critical scenarios. We also plan to

provide a timed extension of this methodology in order to

include quantitative timing information. Time will be in-

deed needed to depict additional properties associated to

resilience, like the notion of window of vulnerability [14].

7

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

Acknowledgements

This work is supported in part by the “Systems Re-

silience” project of Transdisciplinary Research Integration

Center.

References

[1] Serge Abiteboul and Gösta Grahne. Update seman-

tics for incomplete databases. In Proceedings of 11th

International Conference on Very Large Data Bases

(VLDB’85), pages 1–12, Stockholm, Sweden, August

1985.

[2] Carlos E. Alchourrón, Peter Gärdenfors, and David

Makinson. On the logic of theory change: Partial meet

contraction and revision functions. Journal of Symbolic

Logic, 50(2):510–530, 1985.

[3] Chitta Baral, Thomas Eiter, Marcus Bjäreland, and

Mutsumi Nakamura. Maintenance goals of agents

in a dynamic environment: Formulation and policy

construction. Artificial Intelligence, 172(12-13):1429–

1469, August 2008.

[4] Elie Bursztein and Jean Goubault-larrecq. A logi-

cal framework for evaluating network resilience against

faults and attacks. In Proceedings of the 12th annual

Asian Computing Science Conference (ASIAN’07),

pages 212–227, Doha, Qatar, December 2007.

[5] Kenneth D. Forbus. Introducing actions into qualita-

tive simulation. In Proceedings of the 11th Interna-

tional Joint Conference on Artificial Intelligence (IJ-

CAI’89), pages 1273–1278, Detroit, MI, USA, August

1989.

[6] Daisuke Hatano and Katsutoshi Hirayama. Dynamic

SAT with decision change costs: Formalization and so-

lutions. In Proceedings of the 22nd International Joint

Conference on Artificial Intelligence (IJCAI’11), pages

560–565, Barcelona, Spain, July 2011.

[7] Thomas A. Henzinger and Vinayak S. Prabhu. Timed

alternating-time temporal logic. In Proceedings of the

4th International Conference on Formal Modeling and

Analysis of Timed Systems (FORMATS’06), pages 1–

17, Paris, France, September 2006.

[8] Holger H. Hoos and Kevin O”Neill. Stochastic local

search methods for dynamic SAT - an initial investi-

gation. Technical report, In the AAAI’2000 Workshop

on Leveraging Probability and Uncertainty in Compu-

tation, Austin, Texas, USA, July 2000.

[9] Z. Huang, V. Chandra, S. Jiang, and R. Kumar. Mod-

eling discrete event systems with faults using a rules

based modeling formalism. In Proceedings of the 41st

IEEE Conference on decision and control, pages 4012–

4017, Las Vegas, NV, USA, December 2002.

[10] Hirofumi Katsuno and Alberto O. Mendelzon. On the

difference between updating a knowledge base and re-

vising it. In Proceedings of the 2nd International Con-

ference on Principles of Knowledge Representation and

Reasoning (KR’91), pages 387–394, Cambridge, MA,

USA, April 1991.

[11] Hirofumi Katsuno and Alberto O. Mendelzon. Propo-

sitional knowledge base revision and minimal change.

Artificial Intelligence, 52(3):263–294, 1991.

[12] Arthur M. Keller and Marianne W. Wilkins. On the

use of an extended relational model to handle changing

incomplete information. IEEE Transactions on Soft-

ware Engineering, 11(7):620–633, 1985.

[13] Wenchao Li, Susmit Jha, and Sanjit A. Seshia. Gen-

erating control logic for optimized soft error resilience.

In Proceedings of the 9th Workshop on Silicon Errors

in Logic - System Effects (SELSE’13), Palo Alto, CA,

USA, March 2013.

[14] Richard Lippmann, Seth Webster, and Douglas Stet-

son. The effect of identifying vulnerabilities and patch-

ing software on the utility of network intrusion de-

tection. In Proceedings of the 5th International Con-

ference on Recent Advances in Intrusion Detection

(RAID’02), pages 307–326, Berlin, Heidelberg, 2002.

Springer-Verlag.

[15] Kazuhiro Minami, Tenda Okimoto, Tomoya Tanjo,

Nicolas Schwind, Hei Chan, Katsumi Inoue, and Hi-

roshi Maruyama. Formalizing the resilience of open

dynamic systems. In Proceedings of the Joint Agent

Workshop and Symposium (JAWS’12), Kakegawa,

Japan, October 2012.

[16] A.W. Naylor. First-order Logic Models for Real-time,

Discrete-event Systems. Technical report (University

of Michigan. Department of Electrical Engineering and

Computer Science). University of Michigan, Computer

Science and Engineering Division, Department of Elec-

trical Engineering and Computer Science, 1993.

[17] Cuneyt M. Özveren, Alan S. Willsky, and Panos J.

Antsaklis. Stability and stabilizability of discrete event

dynamic systems. Journal of the ACM, 38(3):7300–

7752, 1991.

[18] Gábor Péli and Michael Masuch. The Logic of Prop-

agation Strategies: Axiomatizing a Fragment of Orga-

nizational Ecology in First-Order Logic. Organization

Science, 8(3):310–331, 1997.

[19] Peter J. G. Ramadge and W. Murray Wonham. The

control of discrete event systems. Proceedings of the

IEEE, 77(1):81–98, January 1989.

[20] Nicolas Schwind, Tenda Okimoto, Katsumi Inoue,

Hei Chan, Tony Ribeiro, Kazuhiro Minami, and Hi-

roshi Maruyama. Systems resilience: A challenge

problem for dynamic constraint-based agent systems.

In Proceedings of the 12th International Conference

on Autonomous Agents and Multiagent Systems (AA-

MAS’13) (to appear), Saint Paul, MN, USA, May 2013.

8

