
The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

3C1-OS-13a-4

Integrating Heterogeneous Ontology Schema from LOD

Lihua Zhao Ryutaro Ichise

National Institute of Informatics, Tokyo, Japan

The Linked Open Data (LOD) includes over 31 billion Resource Description Framework (RDF) triples interlinked
by around 504 million RDF links (as of September 2011). Linking related instances in the LOD can help Semantic
Web application developers easily retrieve information from various data sets. However, because of the heterogeneity
of ontology schema in the LOD, it is difficult for them to query the data sets without manually learning ontologies.
An ontology integration method can help us to detect and integrate important ontology schema for linking related
data. Since the links between related resources construct a linked SameAs Graph, we can detect graph patterns
from the linked data. We can discover related classes and properties that are used for linking related instances by
analyzing the SameAs graph patterns. We apply ontology similarity matching on the graph patterns to identify
related predicates from different ontology schema. Using the automatically integrated ontology schema, Semantic
Web application developers can easily understand the ontologies and effectively query on the linked data sets.

1. Introduction

The Linked Open Data (LOD) is a collection of machine-

readable structured data connected by owl:sameAs, which

refers to related or identical instances in diverse data

[Bizer 09]. Although a huge amount of data sets are pub-

lished in the LOD cloud, there is no standard ontology for

all the data sets, but all kinds of ontologies which cause

the ontology heterogeneity problem. A commonly used

method to overcome the ontology heterogeneity problem is

the ontology matching, which finds corresponding mappings

between ontologies [Pavel 11]. Since it is time-consuming

and infeasible to manually inspect large ontologies of linked

data, we need an automatic or semi-automatic method to

integrate heterogeneous ontologies.

In this paper, we propose a semi-automatic approach

to integrate heterogeneous ontologies by analyzing the

SameAs Graphs at both class and property level. From

the SameAs Graphs, we retrieve graph patterns and ana-

lyze linked instances to integrate related classes and prop-

erties for the whole data sets and construct an integrated

ontology. Experimental results show that our approach ef-

fectively integrates core classes and properties from linked

instances with minor manual revision. With the integrated

ontology, we can detect mistaken usage of properties and

can suggest a proper class description for an instance.

2. Our Approach

Figure 1 shows the architecture of our approach, which

consists of graph pattern extraction, <Predicate, Object>

collection, related classes and properties grouping, integra-

tion of classes and properties for all graph patterns, and

manual revision of the integrated ontology.

2.1 Graph Pattern Extraction
The instances which refer to the same thing are inter-

linked by owl:sameAs in the LOD cloud. In order to inves-

tigate on the linked instances, we collect all the instances

Contact: 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430,
lihua@nii.ac.jp, ichise@nii.ac.jp

Figure 1: Architecture of our approach.

that have owl:sameAs (SameAs) link to other instances.

An undirected SameAs Graph SG = (V, E, L), where

V is a finite set of vertices, E ⊆ V × V is a set of edges, and

L is a set of labels of V. Here, a vertex represents the URI

of an instance and a label is based on the pay-level domain

of the URI. We extract graph patterns from the SameAs

Graphs and analyze the instances to retrieve related classes

and properties.

2.2 <Predicate, Object> Collection
An instance is described by a collection of RDF triples in

the format of <subject, predicate, object>, where the sub-

ject refers to the URI of an instance. Since a SameAs Graph

contains linked instances, we collect all the <Predicate,

Object> (PO) pairs of the linked instances as the content

of the SameAs Graph.

We classify the objects of PO pairs into five different

types: Class, String, Date, Number, and URI. The Class

of a URI is defined by rdf:type∗1 and skos:inScheme∗2. The

other four types can be identified by the built-in data types,

which are followed by the symbol “ˆˆ”. If the data types are

not given expressively in the RDF triples, we classify the

value of an object as Number if it only contains numbers,

as URI if it starts with “http://”, and as String otherwise.

∗1 rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
∗2 skos: http://www.w3.org/2004/02/skos/core#

1

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

2.3 Related Classes and Properties Grouping
The classes of ontologies have subsumption relations such

as owl:subClassOf and skos:inScheme. The triple < C1

owl:subClassOf C2 > or < C1 skos:inScheme C2 > means

the concept of class C1 is more specific than the concept of

class C2. In order to identify the types of linked instances,

we focus on the most specific classes from each SameAs

Graph by tracking the owl:subClassOf and skos:inScheme.

We perform ontology similarity matching method on the

collected PO pairs to find out related properties (predicate

in RDF triple). We apply exact matching and similar-

ity matching to extract related predicates, and refine the

groups of predicates with extracted relations as introduced

in [Zhao 11]. All the PO pairs with the same predicate or

object are grouped in a set S as an initial set of predicates.

We adopted three string-based similarity measures:

JaroWinkler distance, Levenshtein distance, and n-gram

[Ichise 10]. String-based similarity measures are applied to

compare objects which are classified as String. The simi-

larity of objects are calculated as follows:

Sim(OSi , OSj)

 1 −
|OSi

−OSj
|

OSi
+OSj

if O is Number

StrSim(OSi
,OSj

)

3
if O is String

(1)

where StrSim(OSi , OSj) is the average of the three string-

based similarity values and the term OS indicates the ob-

jects stored in S. SetSim(Si, Sj) is the similarity between

two sets Si and Sj , which is calculated using the formula:

SetSim(Si, Sj) =
Sim(OSi , OSj) + WNSim(TSi , TSj)

2

where the term TS indicates the pre-processed terms of the

predicates in S and WNSim(TSi , TSj) is the average of the

nine applied WordNet-based similarity values [Zhao 11]. If

the SetSim(Si, Sj) is higher than a predefined similarity

threshold, we merge Si and Sj .

2.4 Integration for All Graph Patterns
For each SameAs graph pattern, we automatically ex-

tract integrated groups of classes and properties which are

classified into String, Date, Number, and URI. Then we

construct an ontology based on the integrated groups of

classes and properties with automatically selected concept

of each group and designed relations. The ex-onto:Term

is designed to represent a class, and the ex-prop:term is

designed to represent a property. We designed a pred-

icate ex-prop:hasMemberClasses to link a set of classes

with an integrated class ex-onto:Term, and designed ex-

prop:hasMemberDataTypes to link a set of properties with

an integrated property ex-prop:term.

2.5 Manual Revision
The automatically constructed ontology integrates classes

and properties from different data sets. However, not all the

terms of classes and properties are properly selected and

some groups of properties lack of rdfs:domain information.

Hence, we need experts to work on revising the integrated

ontology by choosing proper terms, by adding domain in-

formation for properties, and by amending groups of classes

and properties.

3. Experiments

We retrieved 13 graph patterns from the SameAs Graphs

with the data sets LinkedMDB (M), DBpedia (D), NY-

Times (N), and Geonames (G). By analyzing the integrated

classes from the 13 graph patterns, we found what kind of

instances are interlinked from different data sets. For ex-

ample, the SameAs Graphs including instances from (M, D,

N, G) or (M, D, G) are about country, the SameAs Graphs

with (M, D, N) are about actor, the SameAs Graphs with

(D, N, G) are about place, the SameAs Graphs with (M, D)

are about film and actor, the SameAs Graphs with (D, G)

are about place and organization, and the SameAs Graphs

with (D, N) are about person, organization, and place.

Furthermore, we can identify different descriptions of the

classes, for example, the predicates db-onto:Country∗3, geo-

onto:A.PCLI∗4, and mdb:country∗5 indicate country in D,

G, and M, respectively. An example of integrated properties

is the population which includes mdb:country population,

geo-onto:population, db-onto:populationTotal, etc.

The integrated ontology includes 48 groups of classes and

38 groups of properties after minor manual revision. We can

effectively query on various data sets and detect mistakenly

used properties in the real data sets with the integrated

ontology.

4. Conclusion

In this paper, we proposed a semi-automatic ontology in-

tegration method to solve the ontology heterogeneity prob-

lem in the LOD. Our approach apply ontology similarity

matching on the graph patterns extracted from the linked

instances, and analyze ontologies at both class and property

level. Experimental results show that we successfully dis-

covered related classes and properties which are important

to link the instances.

References

[Bizer 09] Christian Bizer, Tom Heath and Tim Berners-

Lee. Linked Data - The Story So Far. International

Journal on Semantic Web and Information Systems,

5(3):1–22, 2009.

[Pavel 11] Shvaiko Pavel and Jérôme Euzenat. Ontology

Matching: State of the Art and Future Challenges.

IEEE Transactions on Knowledge and Data Engineer-

ing, 99(PrePrints), 2011.

[Zhao 11] Lihua Zhao and Ryutaro Ichise. Mid-Ontology

Learning from Linked Data. In Proceedings of the 1st

Joint International Semantic Technology Conference,

2011.

[Ichise 10] Rutaro Ichise. An Analysis of Multiple Similar-

ity Measures for Ontology Mapping Problem. Interna-

tional Journal of Semantic Computing, 4(1):103–122,

2010.

∗3 db-onto: http://dbpedia.org/ontology/

∗4 geo-onto: http://www.geonames.org/ontology#
∗5 mdb: http://data.linkedmdb.org/resource/movie/

2

