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Alan Turing’s question “Can machines think?” motivated his famous imitation game, now commonly referred
to as the “Turing test”. It was widely assumed that a machine that could pass this test must have intelligence.
The construction of such a machine, therefore, was seen by many as the “holy grail” of artificial intelligence (AI).
For several decades, the Turing test had a tremendous impact on computer science and has stirred a wide range
of philosophical debates. Today, however, the Turing test has nearly vanished from AI research agendas. Here,
we argue that the Turing test is still a timely and inspirational source for many researchers. Modern computing
machinery is now an integral part in myriads of problem-solving processes, and it is believed that this powerful
machinery has revolutionized the way how science is done. Computing machinery now even extends beyond the
traditional silicon-based environment to encompass carbon-based, living organisms. This backdrop encourages us
to suggest that there is a creative, bidirectional interplay between human intelligence and the increasing sophis-
tication demonstrated by many computer-based applications and systems. We suggest that even though today’s
machines may not be able to think, they can make us think and encourage us to strive for new insights and knowl-
edge. Whenever this new knowledge is fed back into the various types of machines or unconventional computing
environments, man and machines will become mutual beneficiaries rewarded with increasing levels of sophistication
and intelligence.

1. Introduction

It is difficult to find any other example in computer sci-

ence that has stirred as many heated debates as the Tur-

ing test did since its conception more than six decades ago

[Turing, 1950]. For many years, the test has been extolled

and deprecated, attacked and defended, over and over again

[Saygin et al., 2000]. Although the Turing test is commonly

seen as the ultimate benchmark test for demonstrating that

a machine “has intelligence”, it seems that it is not immune

to aging.

Whereas the test was initially a driving force for AI, it has

lost its impetus over the last two decades. Since the 1990’s,

the test has nearly vanished from the research agendas and

is now merely confined to the history books.

Recently, however, Turing-like tests seem to enjoy a re-

naissance for evaluating living artifacts in systems biology

(e.g., artificial worms [Harel, 2005]). In the spirit of the

common interpretation of the Turing test, a synthetic or-

ganism that is indistinguishable from its natural analog has

past such a Turing-like test.

But what exactly had Turing in mind when he asked the

now mythical question “Can machines think?” The wealth

of papers discussing the test shows that the answer is far

from being unambiguous. It is clear, however, that Tur-

ing did arguably not intend the imitation game as an op-

erational definition of intelligence [Whitby, 1996]. In his

seminal paper, Turing clearly writes that

“The original question, “Can machines think?”

I believe to be too meaningless to deserve dis-

cussion. Nevertheless I believe that at the end
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of the century the use of words and general edu-

cated opinion will have altered so much that one

will be able to speak of machines thinking with-

out expecting to be contradicted.” [Turing, 1950,

p. 440]

Turing instead proposed an imitation game. Although

the original imitation game is more complex, in simple

terms, it refers to a blinded conversation where a human

judge interacts with another human being and a machine.

If the machine can fool the judge most of the time into be-

lieving that it is human – hence, that the machine and the

human are mostly indistinguishable – then the machine has

won the game.

“Turing test” is nowadays commonly interpreted as an

intelligence test, and there exist various flavors of the test

(e.g., see [Saygin et al., 2000] for an excellent overview).

Despite this common interpretation it is often overlooked

or unknown that the test (arguably) was not conceived as

a test for intelligence. Turing’s imitation game rather pro-

vides a framework for a discussion of fundamental concepts

in philosophy, cognitive science, and computer science.

Here, we do not intend to contribute a new interpreta-

tion to this controversial discussion. Instead, we argue that

machines can make us think – in the sense that machines

somehow amplify human intelligence in a creative interplay

that can be beneficial for refining existing theories or even

for finding new theories about the natural world. To some

degree, our argument rests on the observation that pow-

erful or smart or omnipresent (to avoid the term intelli-

gent) computing machinery has revolutionized how science

is done across practically all domains, thereby giving rise

to computational science. It is a simple fact that modern
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computing machinery is now an integral part in a myriad

of problem-solving tasks that require intelligent approaches.

These intelligent approaches may guide us to new insights,

and these new insights can then feed back into existing ap-

proaches in order to fine-tune and improve them. Even

more, this new knowledge may provide a springboard to-

wards new computing-based technology or theory.

As an example, consider the efforts in various human

brain projects∗1. The ultimate goal in these projects is

to develop a computer-based simulation of a biological hu-

man brain. Of course, the process of producing such a sys-

tem will greatly enhance our understanding about biological

nervous systems and the human condition at large. By the

same token, however, the product system would be an intel-

ligent supercomputer with capacities that allow the system

to perform higher cognitive tasks such as problem-solving,

planning, decision-making, or even “thinking”.

In order to further support and more clearly express our

argument this paper is organized as follows. Section 2 di-

rects the reader towards some underrated problems of the

common interpretation of the Turing test. Then, we take a

closer look at some facets of intelligence that may not have

received due attention yet. Finally, we discuss an example

illustrating how machines “can make us think”.

2. Problems with the Turing test

There certainly is no shortage of criticisms of the Turing

test. The most well-known ones include the following:

Criticism 1. The test focuses on only a tiny aspect of intel-

ligence, namely human conversational skills and notably the

skills at deceiving. It is obvious that many humans would

fail the test, so what is the point of subjecting a machine

to it? In section 3.4.2, we discuss an example illustrating

that “intelligent communication” does not necessarily need

to be defined only from an anthropocentric point of view.

Criticism 2. The test fails to disentangle the observer (i.e.,

the judge) from the phenomenon (i.e., the machine trying to

convince the judge that it is a human being). Consequently,

the test has embedded an intrinsic confounder.

Criticism 3. If the test is understood as a test of intelli-

gence, then it is circular: it defines the very notion (“intel-

ligence”) that it claims to be a test for [Hayes and Ford,

1995].

Criticism 4. Lady Lovelace argued that a machine could

never surprise us, only execute programs, and therefore

could never have intelligence.

Criticism 5. Hayes and Ford [1995] mention a perhaps less

well-known problem of the Turing test. The Turing test

(and the imitation game) are designed to detect “no differ-

ence” between man and machine. Searle does “[...] not see

∗1 Two of the most prominent projects are the “Blue Brain
Project” at EPFL (Ecole Polytechnique Fédérale de Lau-

sanne) at http://bluebrain.epfl.ch/, and “SyNAPSE”,
a cognitive computing project from IBM Research at

http://www.ibm.com/smarterplanet/us/en/business_

analytics/article/cognitive_computing.html.

how one could object to such a test” [Searle, 2009, p. 140].

However, from a practical point of view, how do we look

for something that is not there? When we translate the

question into the language of significance testing, then the

problem is tantamount to a null hypothesis (H0: there is

no difference) that we seek to confirm. This, however, is

nearly intractable. In significance testing, the null hypoth-

esis would be stated as H0: there is a difference, which

we might either reject or fail to reject. More importantly,

however, would be the following question: how big is the

difference between man and machine? Effect size estima-

tion with confidence intervals are always more meaningful

than binary “significant/non-significant” verdicts [Berrar

and Lozano, 2012].

Criticism 6. A further problem pertains to the definition of

terms. Turing was quite clear that terms need to be defined

and consequently began his paper as follows:

“I propose to consider the question, “Can ma-

chines think?” This should begin with defini-

tions of the meaning of the terms “machine” and

“think”.” [Turing, 1950, p. 433]

All too often, however, no operational definitions for key

terms are given in papers about the Turing test, and the

terms therefore often remain elusive. We could live with

this state of affairs, if these terms were then not used in-

terchangeably, implying that they refer to the same thing.

All too often, no distinction seems to be made between

“thinking”, “ability to think”, “reasoning”, “reason”; “in-

telligence”, “consciousness”, “mindfulness”, and “having a

mind”; “having a brain” and “humanness”, as if all these

words meant the same thing. In a similar vein, “being mind-

less” and “lacking intelligence” is sometimes understood

to mean the same thing. The juxtaposition of words as

in “[...] genuinely intelligent machines and mindless ma-

chines.” [Saygin et al., 2000, p. 483] is another confusing

example – is “intelligent” really the opposite of “mindless”?

And in what way is a “genuinely intelligent” machine dif-

ferent from a merely “intelligent” one?

We find it even expedient to consider the difference be-

tween the noun ““intelligence” and the adjective “intelli-

gent”. An agent may have ““intelligence” (whatever that

is) yet perform an act that is not “intelligent”, and vice

versa. So what do we wish to measure – is it an intrinsic

ability of the agent or is it something that is linked to an

act?

3. Facets of “intelligence”

We do not aim at providing any operational definition of

the term “intelligence”. In the remainder of this article, we

focus on “intelligent” as an adjective that

1. is time-dependent;

2. involves creativity;

3. and refers to a problem-solving process.
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3.1 Time dependence
Turing believed that the use of words would change over

time so that we might indeed speak of machines thinking,

at the end of the century [Turing, 1950]. However, the very

notion of “intelligence” is also evolving. What we consider

“intelligent” today we may not consider “intelligent” to-

morrow. Would a machine that had passed the Turing test

be labeled “intelligent once and for all”, as Harel [2005]

(p.496) argues? That can be questioned. Today, there are

countless examples ranging from automated speech recog-

nition to chess computers at grandmaster level that would

certainly have surprised Lady Lovelace, to say the least.

In the early 1990’s, chatterboxes have successfully fooled

human beings, so technically, we might argue that they have

passed the Turing test [Humphrys, 2009]. Still, in 2012,

where computer systems such as IBM’s Watson∗2, for in-

stance, are supreme champions in popular quiz shows where

contestants engage in an answer-and-question style compe-

tition, and that are watched live by millions of viewers, we

would arguably not consider these earlier programs intel-

ligent. Hence, in our attempt to subject a machine to a

test of intelligence, we are moving the goalpost because our

own perception of “intelligence” changes over time. Thus,

if we describe something as “intelligent”, we imply that it

is intelligent only at a given moment in time.

3.2 Creativity
Intelligence is linked to creativity [Berrar et al., 2010].

There exists a panopticum of sometimes substantially di-

verse definitions of creativity [Scott, 1999, Boden, 1990].

For example, Kryssanov et al. [2001] consider creativ-

ity as a “cognitive process that generates solutions to a

task, which are novel or unconventional and satisfy cer-

tain requirements” (p.332). They note two essential cogni-

tive mechanisms of creativity: (i) divergent thinking, which

generates original, new ideas, and (ii) convergent thinking,

which logically evaluates a variety of possible solutions to

find the optimal one.

Bisociation is a term that Koestler coined to denote a cre-

ative process involving “the sudden interlocking of two pre-

viously unrelated skills, or matrices of thought” [Koestler,

1964, p. 121].

Boden [1990] distinguishes between two main types of cre-

ativity: (i) improbabilist creativity (i.e., constructing new

concepts by combining existing ones); and (ii) impossibilist

creativity (i.e., mapping a concept into a new space; for

example, Matzingers revolutionary insights into the con-

trolling role of T-cells in immune system responses, which

were allegedly triggered by her dog chasing after sheep).

Impossibilist creativity is a deeper type of creativity as it

requires the mapping, exploration, and transformation of

conceptual spaces [Boden, 1990].

According to the theory by Mednick [1962], creativity

can operate through three components: (i) serendipity (i.e.,

relationships are found by chance), (ii) similarity (i.e., re-

mote associations, for instance through a metaphor model),

∗2 IBM Watson Research Center; http://www.watson.ibm.

com/index.shtml.

or (iii) mediation (i.e., cognitive problem-solving) [Scott,

1999]. According to Mednick, the more remote associated

concepts are, the more creative is the resulting idea. How-

ever, the creative idea must not be only original but also

practically useful.

Chess is a very good example illustrating that intelligence

and creativity often go hand in glove. In 1946, Alan Turing

noted:

“This... raises the question ’Can a machine play

chess?’ It could fairly easily be made to play a

rather bad game. It would be bad because chess

requires intelligence. We stated...that the ma-

chine should be treated as entirely without in-

telligence. There are indications however that it

is possible to make the machine display intelli-

gence at the risk of its making occasional serious

mistakes. By following up this aspect the ma-

chine could probably be made to play very good

chess.” [Hodges, 2008, p. 17].

In 1997, Deep Blue, a computer specifically developed

to play chess, won a game against the then reigning world

chess champion Garry Kasparov who allegedly said that “he

sometimes saw deep intelligence and creativity in the ma-

chine’s moves” [Martin, 2008, p. 191]. “The decisive game

of the match was Game 2...we saw something that went

beyond out wildest expectations...The machine refused to

move to a position that had a decisive short-term advantage

– showing a very human sense of danger.” [Martin, 2008,

p. 191].

Again, Turing’s longsightedness amazes us. However,

what we consider “intelligent” behavior may sometimes be

simply the responses of complex systems, as we will see in

section 3.4.1.

3.3 Problem-solving as a collective effort
Conceptually, any engineered and natural system consists

of a genotype, i.e., the information that it inherently con-

tains, and a phenotype, i.e., the observable qualities such

as the morphology of the system. Naturally, a system oper-

ates in an environment, which, together with the genotype

and random variations, determines the phenotype.

One of the fundamental characteristics of complex and

evolvable systems is robustness [Schuster, 2008, Berrar

et al., 2010], which is believed to be characterized by:

(i) modularity – the system’s components “work together”

synergistically; (ii) redundancy – some of the components

share an identical function; (iii) feedback control – the sys-

tem can detect and react to changes in the environment;

(iv) spatial compartmentalization – the system has an em-

bodiment with compartments that exchange information

with each other; (v) distributed processing – collectively,

the components give rise to a higher, system-level gestalt

(e.g., a swarm); and furthermore, for biological systems,

(vi) extended phenotype – a biosystem could affect its en-

vironment to increase its chances of survival. For example,

termite mounds might be regarded as the extended pheno-

type of a termite’s genome. Similarly, albeit contentious,
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human societies and cultures might also be regarded as the

extended phenotypes of the human genome.

Two aspects are particularly interesting here: spatial

compartmentalization and distributed processing. An ex-

ample of a complex system is a biological neural system

that has learned an association between patterns and can

therefore abstract to similar but new patterns. If we now

consider a problem-solving process that involves a machine,

then we could argue that that machine is an integral part of

a complex system. Thus, if we consider such a process “in-

telligent”, could we then argue that the machine deserves

at least some credit for the intelligent process?

3.4 Examples of unconventional computing
Problem-solving is an important ability of biological sys-

tems and essential for survival. Natural problem-solving

strategies have inspired the design of highly efficient ma-

chine learning algorithms, i.e., algorithms that improve

their performance with experience. Many of these algo-

rithms fall into the remit of optimization and were in-

spired by the intelligent problem-solving strategies observed

among insect societies such as, for example, ants and bees.

The relatively young field of unconventional computing pro-

vides several examples of intelligent problem-solving. The

computing machines, however, are not necessarily based on

silicon only.

3.4.1 Physarum machines

Physarum polycephalum is a true slime mold that has

demonstrated astonishing problem-solving capabilities such

as maze solving [Nakagaki et al., 2000, Tero et al., 2007],

remembering and anticipating periodic events [Saigusa and

Kuramoto, 2008], as well as primitive decision-making

[Latty and Beekman, 2010]. This amoeboid organism is

a large aggregate of protoplasm whose network of tubular

veins enables it to explore its environment [Nakagaki et al.,

2004, Aono et al., 2010]. In its vegetative state, this or-

ganism slowly crawls along surfaces, mainly searching for

food and avoiding sunlight. The two main stimuli (food

and light) can be used to train the organism to solve com-

putational tasks. Despite lacking a central nervous system,

P. polycephalum can make decisions bearing resemblance

to a primitive form of intelligent behavior [Latty and Beek-

man, 2010]. P. polycephalum might therefore be considered

a programmable, massively parallel, and living computer.

These physarum machines only follow physical and bio-

logical laws, though, and what we see as “intelligent behav-

ior” is merely an expression of their responses to external

stimuli.

We queried one of the largest scientific databases, Sci-

enceDirect, for those papers that report on P. polycephalum.

Our analysis revealed the trends illustrated in Figure 1.

Between 1992 and 2007, very few papers reported on

this organism in computer science, decision science, and

engineering-related fields. Only since 2007, we can observe

an increasing interest. In all other fields of science, notably

in the biological sciences, we observe an overall decreasing

trend in interest since the early 1990’s. In 2001, shortly af-

ter the publication of the seminal paper by Nakagaki et al.

[2000], P. polycephalum regained in popularity again, but

Figure 1: Percentage of papers published that report on P.

polycephalum in the period from 1992 to 2011.

only for a short time. In 2011, the percentage of papers

on P. polycephalum was slightly higher in computer science

and engineering-related fields than in all other fields com-

bined. Nonetheless, apart from applications in robotics and

unconventional computing paradigms, it has received only

scant attention in other computer science-related domains.

One reason for the still limited interest is certainly that, as

a living computer, it is extremely slow, compared with con-

ventional computers. However, computational time is not

always a critical factor (e.g., in tasks such as optimal route

planning, time sometimes plays a secondary role).

Physarum machines are therefore an interesting novel ap-

proach to tackle computational tasks that require slow but

“intelligent” decision-making. Indeed, physarum machines

were recently used to solve the multi-armed bandit prob-

lem [Kim et al., 2010], which is a classical machine learning

task.

In his Lecture Notes on Computation, Richard Feynman

noted on Turing machines: “We will see that these machines

are horribly inefficient and slow – so much so that no one

would ever waste their time building one except for amuse-

ment – but that, if we are patient with them, they can do

wonderful things.” Perhaps a similar description would fit

physarum machines.

3.4.2 Collectives of organisms

Naturally occurring, self-organizing collectives of simple

organisms, such as bacteria, often exhibit amazing problem-

solving capabilities despite their lack of a nervous system

[Berrar et al., 2010]. A key element of a bacterial system

is quorum sensing, the regulation of gene expression in re-

sponse to fluctuations in cell-population density [Miller and

Bassler, 2005]. Bacteria can use quorum sensing as a means

of communication with each other, for example, to orches-

trate attacks by synchronously releasing toxins. Natural

quorum sensing was relatively recently discovered, and ar-

tificial quorum sensing is a very young field of research in

artificial life [Beckmann and McKinley, 2009].

Figure 2a illustrates an abstraction of a digital creature.

The expression (or activation) of different genes leads to

different phenotypical responses. The creature is equipped

with receptors to detect signaling molecules, called auto-

inducers, which are produced and released. Under low con-
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Figure 2: (a) Schematic illustration of a digital creature (modeled on a bacterium) equipped with receptors to detect auto-

inducers. Depending on the concentration of activated receptors, different genes are expressed (i.e., activated), which trigger

different responses. (b) Under low-density conditions, the auto-inducers remain undetected. (c) Once a quorum has been

reached, the creatures begin expressing the same genes and act as a collective, for example, by producing toxins to escape

their natural confinement.

centration conditions, they simply diffuse and remain un-

detected (Figure 2b). However, as the density of creatures

increases, the concentration of auto-inducers increases, too,

which leads to their detection and subsequent production of

more auto-inducers (Figure 2c). This positive feedback loop

massively increases the levels of auto-inducers, and once all

receptors of a creature are activated, they trigger the acti-

vation of other genes. In this example, the activation of an

aggressive gene produces toxins that target the cell mem-

brane (i.e., the natural confinement of the bacteria) and

allow the invasion of neighboring cells (Figure 2c).

What is important here is the fact that seemingly prim-

itive organisms (such as real bacteria or digital creatures)

are capable of evolving intricate means of communication

that allow them to act in unison and give rise to a higher,

system-level phenotype.

This example illustrates that “intelligent communica-

tion” does not necessarily need to be defined from a strictly

anthropocentric point of view, as in the imitation game.

When Turing wrote

“There would be no question of the machines dy-

ing, and they would be able to converse with each

other to sharpen their wits” [Turing, 1951, p. 475],

he was referring to digital machines, not living computers.

For the imitation game, Turing only permitted digital com-

puters, but his writing makes it clear that his idea of “ma-

chines” must have been much broader, and that he even did

not make a clear demarcation between man and machine:

“It is natural that we should wish to permit every

kind of engineering technique to be used in our

machines ... Finally, we wish to exclude from the

machines men born in the usual manner.” [Tur-

ing, 1950, p. 435]

Today, however, it has become possible to program liv-

ing organisms with specific functions [Berrar and Schuster,

2011]. For example, Tamsir et al. [2010] implemented all

possible two-input gates including the XOR and equal func-

tion in a colony of Escherichia coli bacteria. Indeed, such

machines can die and converse with each other.

4. Can machines “make us think”?

For his imitation game, Turing allowed only digital com-

puters, not engineered carbon-based artifacts. If we con-

sider conventional computers only, can they amplify human

intelligence, help us refine or even discover new theories

about the natural world, hence “make us think”?

We propose the dungeon dilemma, which is mathemati-

cally identical to the Monty Hall problem, a variant of the

three prisoners problem. However, the dungeon dilemma

frames the problem in a different context inolving a com-

puter as critical component.

Imagine that Bob is the prisoner in a dungeon. There are

three locked doors. The jailor has the keys to these doors.

Jailor: “Only one of these doors leads to freedom. I know

which one. If you can find that door, then you may leave

the dungeon; otherwise, you will stay. Which door do you

choose?”

As Bob has no further information, he thinks that his choice

really does not matter – any door can be the good one.

Bob: “I’ll take the door in the middle, then.”

With a big smile, the jailor does not open the middle door

but the left door.

Jailor: “Good that you haven’t chosen the left door. See?

There is a brick wall behind it! So are you sure that you

want me to unlock the middle door? Or perhaps would you

like to switch to the right door? Remember, only one door

leads to freedom; the other one has a brick door behind it,

like the door that I have just opened.”

Bob hesitates a moment.

Bob (thinking): “Why should I change my mind now? After

all, there are two doors left. So my chances are now 50:50,

aren’t they? But why does he make this proposal, actually?

Perhaps I am right with my choice, and he just wants to

trick me? Or maybe I am wrong, and he wants to give me

another chance? Or perhaps he would have opened one of

the two doors with a brick wall behind, anyway, regardless

of whether I was right or wrong with my first hit. I really

can’t tell.”

Bob’s head starts spinning. But his thoughts about the

jailor’s psychology do not get him anywhere. Then Bob
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has the following idea.

Bob (thinking): “I wonder how many prisoners in the same

situation could get out by sticking to their initial choice, and

how many prisoners could get out by changing their mind.

If the numbers are about the same, then it really does not

matter whether I stick to the middle door or switch to the

right door. But if the numbers are different, then I know

what to do!”

Luckily, Bob had his laptop with him. Hastily, he hacks

in a few lines of code in R [R Development Core Team,

2009] that simulate his situation. Bob assumes that the

jailor would open one of the doors with a brick wall behind,

regardless of Bob’s initial choice.

To his great surprise, Bob obtains the following result: of

100 prisoners in the same situation, 32 would stay in prison

by sticking to their initial choice, whereas 68 would go free

by changing their mind. This means that his chances of

leaving the dungeon are about twice as high if he changes

his mind, that is, if he chooses the right door! Not without

hesitation, Bob tells the jailor that he decided to switch to

the right door.

Jailor: “Congratulations! You are free to go!”

Then the jailor unlocks the right door, and Bob happily

leaves the dungeon.

Bob’s hastily hacked R code

n <- 100; k <- NULL; s <- NULL

for (i in 1:n){

x <- sample(c(1,0,0)); y <- sample(c(1,2,3))[1]

keep <- x[y]; p <- which(x==0); o <- setdiff(p,y)

if(keep==1){o <- sample(o)[1]}; swap <- x[c(-y,-o)]

k <- c(k,keep); s <- c(s,swap) }

stay <- sum(k)/n*100; free <- sum(s)/n*100

Once escaped from the dungeon, Bob started to study

his program. He observed that the estimates for stay and

free become more stable with increasing values of n; and

for very large values, he observed that stay ≈ 1
3

and free

≈ 2
3
.

Bob also found an analytical solution to the problem.

Before the jailor had opened the left door, his chances∗3

of being right were 1
3
. Let P (door) denote the chance

that a door leads to freedom. Then P (middle door) = 1
3
.

One of the doors must lead to freedom, so P (left door) +

P (middle door) + P (right door) = 1. This means that

P (left door) + P (right door) = 1 − P (middle door) = 1 −
1
3

= 2
3
. So, the chance that either the left or the right

door leads to freedom is 2
3
. This is what he could have

inferred before the jailor opened the left door. After the

jailor had opened the left door, he knows that a brick wall

is behind it; thus, P (left door) = 0. It therefore follows

that P (right door) = 2
3
− 0 = 2

3
. Hence, the chances of

leaving the dungeon are exactly twice as high if he decides

to switch to the right door.

∗3 We intentionally choose the term “chance” in lieu of “prob-
ability” to avoid disgressing on frequentist and Bayesian inter-
pretations of “probability” in this context.

The dungeon dilemma is a variation of the Monty Hall

problem, which gained popularity through the TV show

“Let’s make a deal”. Here, the quiz master, Monty Hall,

offered the candidates to choose among three doors. Be-

hind only one of the doors, there is a prize. After the

candidate had announced his choice, Monty Hall opened

a non-winning door and offered the candidate to switch.

This game sparked heated debates, even among statisti-

cians. Most people found the correct solution counter-

intuitive and wrongly believed that the chances are 50:50

after the non-winning door had been opened.

The dungeon dilemma frames the decision-making prob-

lem in a deliberately extreme (and actually trivially simple)

scenario. But it nicely illustrates a synergistic problem-

solving process by a man and a machine. Neither entity

alone could have solved the problem. Bob knew how to

specify and code the problem, while the machine “knew”

how to execute it. Neither Bob nor the machine could have

known or even guessed the experimental results (i.e., the

numeric values of stay and free).

5. Conclusions

The Turing test has been a driving force for AI for sev-

eral decades. More recently, however, the Turing test has

nearly vanished from AI research agendas. Indeed, today,

it is almost considered irrelevant as a subject of research in

AI. Against this backdrop, we argued that Turing’s land-

mark paper [Turing, 1950] is still an inspirational source

that serves well as a framework for the discussion of key

issues in philosophy and AI.

Specifically, the Turing test (or, more precisely, the imi-

tation game) is relevant when we study it with an emphasis

on the human psychology: how well can we be fooled by so-

phisticated computer programs on the internet and tricked

into disclosing sensitive data?

A particular focus of this paper emerged from Turing’s

famous question: “Can machines think?” The paper took

a step ahead of this question by suggesting a creativity-

encouraging feed-back mechanism between human intelli-

gence and the increasing smartness and problem-solving

skill demonstrated by many computer-based applications

and systems in a variety of conventional as well as uncon-

ventional computing environments. The observation that

“AI is the business of using computation to make machines

act more intelligently, or to somehow amplify human intelli-

gence.”, as noted by Hayes and Ford [1995] (p.977), summa-

rizes this point rather well. And perhaps, Bob in the dun-

geon dilemma, where a simple computer program could in-

deed somehow amplify his intelligence, couldn’t agree more.
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