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Abstract: The problem of tracking human activities of daily living is considered an important subject that crosses a broad 
spectrum of disciplines. In this paper, we study the problem of creating an inference mechanism to recognize and respond to 
human behavior. We provide probabilistic methods to build a new Bayesian framework to deal with human tracking problem. 
Specifically, we present a technique to extract the structural features from data sensors and provide a set of algorithms to 
encompass the learning solutions in order to cope with unreliable and noisy measurements. The framework permits automatic 
activity tracking of daily routines of the inhabitants in a closed environment such as smart homes. Unlike almost all of related 
works, we propose an efficient algorithm for sensing systems that presents an alternative to sensors that are sometimes 
perceived as invasive, where notably we do not use vision-based learning. Preliminary results show that the proposed system 
can be deployed in different environments and significantly outperforms existing methods in a very reliable manner.  
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1. Introduction 
The advent of new sensors and communication technologies 

characterized by tiny and low cost devices opens new horizons to 
develop robust home automation systems. This trend continues to 
proliferate in conjunction with the new generation of electric 
household appliance that can be integrated in order to respond to 
the demands of such applications as tracking human activities in 
a smart home. The activity tracking focuses mainly on what are 
the mechanisms by which the system will generate a coherent 
interpretation to diverse sensor measurements caused by human 
activity, and tries to identify the activity engaged by the 
inhabitants to provide the right service at the right time in the 
right place. However, a number of problems arise due to the 
uncertainty that characterizes the human behaviors described 
below: 

1. Normal and routine happenstance change across different 
people, resulting from different habits as well as gender or age 
differences. 

2. Variability of the activity within the same person: people 
tend to alter their habits in various situations or contexts 
depending, e.g., on whether he/she is in a hurry or just changes 
plans when interrupted for some reasons. 

3. Time: how people behaves differently on weekdays and 
weekends under various situations. The frequency and sequential 
order of a certain activity may change. 

4. Environment: the inhabitants adapt their behaviors 
accordingly to the arrangement of furniture. 

5. Weather: people take shower more often in summer. 
 

   A key challenge is to understand and analyze the human 
activities. In recent years, several research projects have been 
initiated [1,2,3,4]. The most common approaches to modeling 
human activities consider the most frequently occurring activities 
used to measure the functional health of an individual [5]. 

Normally the approaches vary accordingly to the type of sensors 
used to monitor and on the type of model employed to represent 
the activities. While an activity model may vary depending on 
what kind of activities we are interested to track, the performance 
and the type of sensor information remain a critical aspect. In 
particular, the complexity of computations has been greatly 
underestimated. Almost all of existing works on activity 
recognition have focused on modeling and learning by entailing 
the sequential and temporal relationships between the observed 
events. Notable methods among them include Bayesian model 
[6], ontology methods using a semantic reasoner [7], or decision 
trees to learn the logical descriptions of the activities [8]. Other 
methods instead generalize the hidden Markov model by using 
the hierarchical hidden semi-Markov model [9], or HMM [10] 
with attempting to model the state duration in HMM. We retain 
the last approach unnecessary besides being computationally 
expensive. We believe also that the time duration is not so 
important at the end of the activity recognition and consider that 
the time duration could be estimated in different manners, 
without the necessity of the high precision required for speech 
recognition [11]. In this paper, we aim to build a complex model 
by developing thereby simpler components, and dealing 
efficiently with the complexity of computing. We present a new 
technique to extract the data features. There are few studies that 
have specified the system using solely discrete sensors, which 
reduces the possibility of the system to be deployed in our real 
life. We also consider a generic model to represent activities that 
could happen in our daily life. In particular, we propose an 
automated dynamic Bayesian model, which is motivated by the 
reduction of uncertainty that characterizes the measurements, and 
by our desire to address the above problems through a consistent 
Bayesian perspective. In a special case, we present here a 
dynamic selector of factorial HMM (DSFHMM), which is based 
on naïve Bayesian classifiers that help to select the desired model 
on the context location of the inhabitants. 

The remainder of the paper is organized as follows: in Section 
2, we discuss the problem evaluation and provide solution to 
some issues we presented in this section. Important assumptions 
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are considered to tackle these problems and to follow the rest of 
the paper. Section 3 gives a short introduction to the Bayesian 
network and introduces the DSFHMM model and its formulation 
for inference and learning. In Section 4, an experimental result 
for the task of activity recognition is presented and the 
conclusions are drawn in Section 5.    
 

2. Problem statements and assumptions 
The classical supervised learning problems are based on 

constructing a classifier that predicts the labels of the objects 
given sufficient training examples from the past observed objects 
which are considered the domain space H of all possible 
classifiers. In the vision of activity tracking, it is generally 
accepted to assume the space H including all activities classes 
that are performed in a consistent manner during the daily life of 
the inhabitants. The activities here are seen as a temporal 
sequence of human actions, in which every action can activate a 
particular configuration of sensor events located at specific home 
space. Any configuration of those events is maintained until a 
new activation will take place. However, the problem here is to 
provide a classifier function that maps from a sequence of 
configurations of sensor events to the class of activities. To 
formalize this task we need to make some assumptions we 
consider as follows.  

2.1 Sensor events 
Clustering data sensor by time and location is an important 

task in the activity tracking. We adopt an approach similar to that 
of a detective: the inhabitants when they are moving, activate 
different sensors located on the surrounding area, which 
generates a sequence of sensor events that will constitute our 
clues on predicting the nature of the activities that are taking 
place. Each configuration state of sensor events lasts normally 
for a period of time and terminates by switching to another 
according to the progress of the activities inside the home. For 
convenience, we consider only discrete sensors to represent the 
events. Therefore, if we have n binary sensors with two discrete 
values, we get 2n events. Sensors that emit continuous value for 
example could be used through discretization to divide all 
interesting values into a set of intervals of interest. The actions 
are performed by the users while they are performing their daily 
tasks like moving around, cleaning, eating, to name a few. In the 
learning phase, the sensor events are considered as the action 
features variable Yt whose state space is the set Yt = {e1, . . . ,eN} 
of unit (column) vectors ei = (0, . . . ,1,0, . . . ,0) of RN, which are 
simplex. We denote by ei a sensor event. Using a configuration of 
n discrete sensor events we get yt = (e1,e2,…,en). 

2.2 An  illustrative example: washing hands 
We consider an illustrative example to demonstrate how to 

find a solution to the problems. We assume a house equipped 
with all the necessary sensors, we imagine the inhabitant, 
henceforth called user, enters in the bathroom and activates the 
following sensor events: while the timer accounts for the time 
elapsed from the starting of the activity, a location status event 
results “Bathroom”, a water usage status event is “ON” 
indicating a “specific area” of the bathroom. If we suppose to 

know when the activity starts, how can we predict its end? The 
most obvious answer to this question is to say when the user 
turns off the tap. But what about if the user opens and closes the 
tap while he is washing his hands? It is hard to admit that he 
washes them many times consecutively. Therefore, many 
scenarios can come true and others however are unlikely. We 
need to assume a criterion to define both an activity and how it 
can end.  

2.3 Activity class 
The activity gives rise to a sequence of action features which 

is regarded to as a realization of different length T of an unknown 
random process. To exploit the sequential patterns in the action 
features, we denote by an activity class i all the sequences of 
action having the same length Ti and the elements. All 
preselected activities are stored and clustered on Na activity class, 
each class i contain ni activities. Henceforth we denote by Xt,i a 
random variable belonging to the activity class i. 

2.4 Mean time duration  
Back again to the above example, normally the user washes 

and dries his hands and leaves then the bathroom. But what 
happens if for some unknown reason he decides to stay in the 
bathroom doing probably nothing? This signifies that something 
is going wrong and it could be useful if we can report it, 
especially when we monitor elderly persons. In that case, we 
consider the mean time duration Tm spent by the users to perform 
their activities as information that could be useful and sometime 
a criterion for the decision making (see problem 1, 3). We 
consider also the end of each activity as the beginning of another. 
Furthermore, we can label also the tasks that are not pre-selected 
for the activity tracking by assigning them a default name. That 
is, if a user is doing nonsignificant task, it says that he is doing an 
“unknown” activity until it is proven otherwise. 

2.5 The context of location 
To reduce the computational complexity, we associated a set 

of an equal number of sensors to each location context and 
indicate it by the variable U. This variable will play an important 
role to enable the desired activity models applied to recognize 
which activity class is taking place. U is also partitioned into two 
other variables: the first one is L which represents the global 
location, and the second one is Lsub to represent the local sub-
location. If L assumes for example a value such as kitchen, Lsub 

will assume a value such as refrigerator area. However, to encode 
a particular information such a composite activity (problem 2), 
where two individuals are seen to perform simultaneously the 
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same task, we add a new activity class to the pre-selected 
activities and increase the number of sensors to avoid any sensor 
collisions. That is, if more than two activities are engaged 
simultaneously or more than one individual perform the same 
task, we can follow the same procedure. To implement the 
localization algorithms, we use the naïve Bayesian Classifiers 
shown in Fig. 1, which are efficient and also one of the most 
widely used methods.  

 

2.6 Data preprocessing 
The sequence of actions Y1:t performed up to time t consists 

normally of a number of consecutive occurrences of actions. We 
retain that is unnecessary for the purpose of learning and do not 
carry any information that might be relevant. However, to speed 
up the decoding and learning stages, we keep just the first 
element of all consecutive actions yt on the sequence Y1:t having 
the same value (see Fig. 1). To this end, we define the following 
function: 

 
 
(1) 
 
 

The timing of the activity class process follows the last 
element of the new sequence Y1:tv. That is, a pair (Xtv,i, Ytv) 
running in Y1:tv are without consecutive occurrences in the action 
Ytv . This will improve greatly the time complexity and will 
render the flow depending on the new timing. 

3. Model definition and implementation 
Bayesian networks, also called Belief networks, are graphical 

structures for modeling the probabilistic relationships among a 
large number of nodes (or variables) representing a set of 
propositions regarding the structure of a given domain. The arcs 
signify direct dependencies between the linked propositions, and 
the strengths of these dependencies are quantified by conditional 
probabilities called the parameters. Each proposition, will be 
assigned a measure of belief. A dynamic Bayesian network is an 
optimal candidate to simulate a smart home, and emphasizes 
dynamically the interaction between the system and the 
environment. 

3.1 Information flow 
In light of all assumptions considered in the previous section, 

we formalize the problem by denoting an unknown activity i at 
time t with a variable Xt,i whose state space have a size ni , in 
which each every state is associated to the sequence order of the 
action consecutive on the time. It means that an activity i at 
timestep t generates a sequence of action features y1:t which is 

regarded as a realization of length t, generated iid from an 
unobserved homogenous Markov chain process {Xt,i}. The 
probability distribution on the state space of Xt,i, will generate 
values on the state space of the action features variable Yt. At this 
point, we consider the two time-slices of the dynamic Bayesian 
model shown in Fig. 2. We model the probability distributions 
over the random variable Zt=(Ut, Xt, Yt), where Ut represents the 
context location (see Section 2.4). The model is defined by the 
pair (A1,A ), where A1 is the prior probability distribution P(Z1) 
we assume uniform, A  is the transition probability defined as 
follows: 

 
                                   (2) 

 
i
tz

 
is the i’th node at time t, and includes the i’th component 

of the selected activity class with Na the total number of pre-
selected activities class. In light of Eq. (1) and (2), it seems 
reasonable to assume the model to be a first-order Markov, and 
represent all pre-selected activities through the persistent slices 
which are connected with arcs from the left to the right, which 
reflects naturally the causal flow of the time. The evidences from 
the context location Ut will play the fundamental role of selector 
by activating the persistent arcs flow between selected nodes 
which represent also the current activities class. Furthermore, 
special sensors are deployed to observe the actions in their 
respective context location. The data flows instant by instant 
reflecting the factual knowledge about the selected activity class. 

We can write the transition probability from Eq. (2) as: 
 

               (3) 
 

which is the probability to make a transition in time t from the 
activity state k to state j. The probability to observe an action y 
given that the activity class i is on the state j can be written as:   

 
                                                                                                                  (4) 

 
The network in such a manner turns into a computational 

architecture due to the persistent links represented the selected 
activities due to the local context, and these links are used not 
merely for storing the factual knowledge about a given activity, 
but also for directing and activating the data flow in virtual 
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timing. The manipulation of this dynamic knowledge will be 
executed in parallel to dynamic computations, which have the 
task to verify if one or more activities among the selected 
activities are completed. On this task, the most probable activity 
of the pre-selected activities is estimated by means of Viterbi’s 
decoding algorithm VDA. 

In the dynamic program of VDA, forming an ergodic HMM, 
the selected activity class i with ni activities requires O(ni

2) at the 
time t. The whole sequence up to t require O(t ni

2). We denote by 
vt,i[j] the probability of the most probable sequence of states of 
the activity class i which has generated the sequence of actions 
Y1:t and is ended with the state j, we can write it as follows : 

 
                                                                               (5) 

                                                                                 
which refers to maximize the following expression: 

       
          (6) 

 
with v0[j]= 1/ni. The last expression will be clarified more later. 
The time duration can be evaluated when we reach the end of the 
activity. If we call t the current time and Ti the last time observed 
to complete the same activity i. We store the new mean time 
duration as follows: 

     
                

                                                              (7) 
 

At this point we can reset the system.  
 

3.2 Data acquisition 
During the data acquisition stage, the activities are now 

considered the input which corresponds to a sequence of actions, 
and the sequence of action features will be assumed the output. 
The data was collected from villa Basilea, a protected residence 
for elderly, with an agreement with municipality of Genoa, Italy. 
This collection of data examples called dataset  
Dt,i={(X1:t,i,Y1:t,I,Ut,i,t’)| i=1:ns}1:Na was separated accordingly to 
the generating activity chosen from the pre-selected categories. 
The users were supposed to be given a PDA endowed with a 
small custom program that displays tree images and the users 
were asked to select in a straightforward manner the tree icons 
including the following information; the start and ending of an 
activity class they were engaged to do and its respective name. 
Whereupon the relative frequency of the observed sequence of 
action features Y1:t , namely the likelihood, was evaluated by 
following the probability rule P(Y1:t/X1:t,i), with which the 
sequence was produced, and simultaneously the mean time 
duration Tm,i was updated. We observe that each activity class 
was considered on its variability. 

3.3 Parameters learning 
The second stage is to train the model parameters 

�i=(Ai,j,k,Bi,y,j,Ut) for activity class i that maximizes the likelihood 
P(Y*/�i) of the observed training sequence of actions Y*=Y1:t’

 

from the training set Dt,i. Let Ai,j,k denote the number of times the 
state j follows the state k in the most likely sequence of states of 

the activity class i. Similarly, let Bi,y,j denote the number of times 
the action y is performed during the activity class state j in the 
most likely sequence. The examples Dt,i collected as described 
above exhibits a sequential correlation we encode in the 
parameters �i by mean of Viterbi training. The updated 
parameters are given by: 

 
 

          (8) 
 

 
                                                               (9)                  

 
 
We use Baum-Welch algorithm to Y*. This is achieved at the 

first step by applying the subroutine forward and backward to the 
input data Y* to compute all the following matrices: 

                                                 
                                         (10) 

 
 

                                                                  (11) 
 
 

for every  1≤ t ≤ Tm,i and 1≤ j ≤ni . The matrix is ni*ni with 
elements: 

                                                         (12) 
 

fwdt,i,j is the probability to observe a sequence of action features 
Y1:t and that at time t the activity Xt’,i is j, then                                              
 
                                fwdt,i,j  = P(Y1:t  , Xt,i)                           (13) 

 

and backt,i,j is the probability to observe the sequence of actions 
Yt+1:Tm,i given that the state of the activity Xt,i is j. 

 
                          backt,i,j  = P(Yt+1: Tm,i | Xt,i)                    (14) 
 
 The algorithm employs O(Tm,i ni

2) to process all observed 
actions. We observe that the parameters �i encode insight the 
value of the context location Ut. That is, the second step is to re-
estimate Ai,j,k, and Bi,y,j through generalization over the time given 
by:  

 
          (15) 

                           
                       (16) 

 
where Ct = P(Xt+1,i = j, Xt,i =k / Y*,�i) is the probability that a 
transition from state k to state j occurred at the instant t given we 
observed the sequence of actions features Y* and Dt = P(Xt,i=j / 
Y*, �i) is the probability to be in the state j at time t given we 
observed the sequence of actions features Y* . We compute these 
quantities as follows:  

 
                   (17) 
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                                                  (18)                    

                                          
 
At this step, we use Baum-Welch to update the model 

following the equations (7) and (8).  
At this point, the idea is to improve the correspondence 

between the action state xt,i and action features state yt. Until here 
we addressed the problem of recognition of an activity as a time 
series with different length. To address the tracking problem, we 
derive a statistics from the preselected activities. To this end, we 
define the following parameters: 

 
   
                                                                    (19) 

 
 

                       (20) 
 

 
                                                      (21) 
 

 
NBX(xi) is the normalized number of activities on the class i 
starting with the action xi, inversely NBL(xi) is the normalized 
number of activities on the class i lasting with the action xi. NBT 
(n,m) is the normalized number of transition from the activity n 
to the activity m. The idea is to track the human activity by using 
the previous transition matrix and making some modification in 
order to take into account the sequence order with which the 
actions are taking place on one activity. The new state transition 
probability will be modified assuming the following values: 
 

1. A,j,k = Trans(n,m),  if j is the last action on the activity n 
first to switch to another state, and k is the first action on 
the activity m. 

2. A,j,k = 0 , if j and k are executing on different activities. 
3. A,j,k=0 , if j and k are on the same activity but j comes out  

after k. 
4. A,j,k= Ai,j,k, if j and k are on the same activity but j comes 

out before k. 
 

The state transition probability By,j keeps the same values.  

4. Experimental results 

4.1 Recognition testing 
  To validate the proposed model, the users were monitored while 
are performing their tasks, all located in the kitchen. Accordingly 
to the data training, we collected a number of runs of eight pre-
selected activity classes performed in the kitchen. The purpose of 
the system is to recognize the activity from the measurement of 
the actions performed while an unknown activity is executing. 
The system recognition is based as seen above, on calculating the 
maximum path probability for actions over all possible paths 
resulting from experimental observation. This means that we 
need to compute the following equation: 
 

                 P(X1:T/Y1:T) ∞ P(Y1:T/ X1:T)P(X1:T)              ( 22) 
 
which is similar to maximize the model of likelihoods for all 
possible models P(Y*/�i) built for all selected activities whose 
likelihood is the highest [11]: 

 
                (23) 

 

Figure 4 Log likelihood of learned activities class 
 
Fig. 4 shows the logarithmic likelihood of eight activity class 
where it is clear that the activity class 2 will be selected 
satisfying the condition of Eq. (16). 
 

4.2 Experimental verification 
   

Figure 5  Networked smart environment 
 

The idea behind the algorithms described above is to provide a 
reasoned guidance on what will belong to the probabilistic 
intelligent expert we attempt to implement. On the real world 
environment, the appropriate architecture as shown in Fig. 5 
requires the support of ubiquitous networked computing. To this 
end, a distributed wireless sensor network seems to be an optimal 
candidate to well satisfy this necessity, supporting multiple 
sensory devices with sufficient networking capabilities. 
Meanwhile, an in-house simulator as shown in Fig. 6 was 
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developed in order to display the sensor status events and to 
perform the further control on the devices using a GUI. We are 
also currently implementing the API for the hardware interfaces 
for a variety of sensor units seen in Fig. 7.  
 

Figure 6 Simulator Screenshot 
 

 
 
 
 
 
 
 
 
 

 
Figure 7 Arduino and PIR sensor 

 

5. Concluding Remarks 
In this paper, an efficient solution to the problem of tracking 

human activities of daily living is presented. This work is a first 
step toward implementing a probabilistic expert system capable 
of tracking human activities and providing useful services within 
a smart home environment. The acquisition and analysis of an 
enormous amount of data requires reliable yet cheaper devices, 
as well as efficient algorithms, which constitute a critical aspect 
to be used widespread. The current feasibility study showed 
encouraging preliminary results. The applicability and 
effectiveness of the proposed algorithms will be further verified 
through extensive simulations and real world experiments. 
 

 

                    References  
• D. Cook, M. Youngblood, E. Heierman, K. Gopalratnam, S. 

Rao, A. Litvin, F. Khawaja, “Mavhome: an agent-based 
smart home,” IEEE Int. Conf. on Pervasive Computing and 
Communications, 2003. 

• S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, 
E. Jansen, “The gator tech smart house: A programmable 
pervasive space,” Computer, vol. 38, no. 3, pp. 50–60, 
2005.  

• G.Abowd and E.Mynatt, Smart Environments: Technology, 
Protocols, and Applications, Wiley, pp. 153–174, 2004.  

• H. K. Dieter, D. Fox, O. Etzioni, G. Borriello, L. 
Arnstein,“An overview of the assisted cognition project,” 
AAAI Workshop on Automation as Caregiver: The Role of 
Intelligent Technology in Elder, 2002. 

• P. Rashidi, D.J. Cook, L.B. Holder, M. Schmitter-
Edgecombe, “Discovering activities to recognize and track 
in Smart Environment,” IEEE Trans. on Knowledge and 
Data Engineering, Vol. 23, Issue 4, 2011. 

• A. Madabhushi, J.K. Aggarwal; “A Bayesian approach to 
activity recognition,” IEEE Workshop on VS, 1999. 

• L. Chen, C. Nugent, H. Wang, “Knowledge driven 
approach to activity recognition in smart homes,” IEEE 
Trans. on Knowledge and Data Engineering, Vol. 21, 2009. 

• U. Maurer, A. Smailagic, D. Siewiorek, M. Deisher, 
“Activity recognition and monitoring using multiple 
sensors on different body positions,” Int. Workshop on 
Wearable and Implantable Body Sensor Networks, pp.4–
116, 2006 

• T.V. Duong, H.H. Bui, D.Q. Phung, S. Venkatesh, 
“Activity recognition and abnormality detection with 
switching hidden semi Makov model,” CVPR 2005.  

• T.V. Duong, H.H. Bui, D.Q. Phung, S. Venkatesh, “Human 
behavior with generic exponential duration modeling in the 
hidden semi-markov model,” ICPR 2006.   

• L.R. Rabiner, A tutorial on hidden markov models and 
selected applications in speech recognition, Proc. IEEE, 
77:257-286, 1989. 

 


