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This paper explores the use of MathML Parallel Markup Corpora for automatic understanding of mathematical
expressions, the task of which is formulated as a translation from Presentation to Content MathML Markups. In
contrast to previous research that mainly relied on manually encoded transformation rules, we use a statistical-
machine-translation-based method to automatically extract translation rules from parallel markup corpora. Our
study shows that the structural features embedded in the MathML tree can be effectively exploited in the sub-
tree alignment and the translation rules extracted from the alignment give a boost to the translation system.
Experimental results on the Wolfram Function Site show that our approach is an improvement over a prior rule-
based system.

1. Introduction

1.1 Motivation
One of the most significant discussions regarding the digi-

tization of mathematical and scientific content and its appli-

cations is about semantic enrichment of mathematical docu-

ments, that is, adding or associating semantic tags - usually

concepts - with mathematical expressions. By encoding the

underlying mathematical meaning of an expression explic-

itly, it is possible to interchange information more precisely

between systems that semantically process mathematical

objects. The direct application of this idea enables semantic

searches for mathematical expressions whereby the systems

understanding of the intent of the searcher and the contex-

tual meaning of mathematical terms improves search accu-

racy. It also benefits computer algebra systems, automatic

reasoning systems and multi-lingual translation systems.

However, as is the case with natural language, seman-

tic enrichment of mathematical expressions is a non-trivial

task.

• First, mathematical notation, though more rigorous

than natural language, is nonetheless at times ambigu-

ous, context-dependent, and varies from community to

community. [4] points out that the difficulties in infer-

ring semantics from a presentation stem from the fact

that there are many-to-one mappings from a presenta-

tion to semantics and vice versa.

• Second, the underlying mathematical meaning of an

expression needs to follow a semantic markup in a se-

mantically rigorous way. Because of this, in failing to

follow the constraint, the computer might not be able

to process that expression.

• The third problem is that new notations tend to be

introduced and used when needed so a mechanism is

required for referring to mathematical concepts outside

of the base collection.

The aim of this paper is to introduce a method of auto-

matic semantic enrichment for mathematics that is capable

of analyzing and disambiguating mathematical terms.

1.2 Problem Statement
In our research, MathML [4] Presentation Markup is used

to display mathematical expressions and MathML Content

Markup is used to convey mathematical meaning. The se-

mantic enrichment task then becomes one of generating

Content MathML outputs from Presentation MathML ex-

pressions.

There are three reasons why we chose MathML markup

in our research.

• First, since its first release in 1997, MathML has grown

to become a general format that enables mathematics

to be served, received, and processed in a wide variety

of applications.

• Second, MathML can be used to encode both mathe-

matical notations and mathematical content.

• Last, large collections of formulas are available in

MathML, and we can easily assess these collections.

In the scope of this paper, we only make use the informa-

tion within a mathematical expression for disambiguation

when translating it into content markup.

1.3 Limitations of Prior Work
The prior solution to this problem is SnuggleTeX [5],

which was proposed by David McKain. The system uses

rule-based methods for disambiguation and translation.

This solution has two main limitations:

• Since it is a hand-written rule-based system, Snuggle-

TeX requires mathematical knowledge and human ef-

fort to develop.

• Due to the diversity of mathematical expressions,

SnuggleTeX is still considered experimental and has

difficulty processing complicated mathematical sym-

bols and expressions.
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1.4 Our Approach and Key Contributions
In this paper, we propose an approach that automatically

learns semantic inferences in a presentation from parallel

markup data. This approach is based on statistical ma-

chine translation. The underlying mathematical meaning

of an expression is inferred from the probability distribu-

tion p(c|p) that a semantic expression c is the translation of

a presentation expression p. The probability distribution is

automatically learned from both Presentation and Content

MathML markup data, that is, parallel markup MathML

data. The data used in this study was collected from the

Wolfram Function Site [14]. We also prepared other parallel

markup MathML data by annotating mathematical expres-

sions in 20 papers from The Archives of the Association for

Computational Linguistics [15] (ACL-ARC).

There are two main contributions in this paper:

• First, we successfully applied machine translation tech-

niques to solving the problem of mathematic semantic

enrichment. Experimental results show that our sys-

tem significantly outperforms the current rule-based

system and it can handle a lot of practical cases in

the semantic enrichment problem. The quantity and

quality of mathematical expressions are continuing to

grow, and we believe that our system will be able to

cover most mathematical expressions.

• Second, mathematics knowledge such as a sym-

bol’s meanings or structural relations is automatically

learned while training; therefore, the system requires

no human effort or expertise, and it is easier to update

with more data. Since new notations keep cropping

up, it is important to update the system as quickly as

possible.

1.5 Summary of Experimental Results
We performed a ten-fold cross validation on mathemati-

cal expressions from six categories of the Wolfram Functions

Site to evaluate the effectiveness of our learning method.

We performed another experiment to assess the correlation

between the systems performance and training set size and

found that increasing the size of the training data boosted

the systems performance. We also performed an extensive

comparison with prior work [5] using a data set collected

from ACL-ARC scientific papers. Our experimental re-

sults show that our approach works well in dealing with

the mathematics semantic enrichment problem and it out-

performs the previous work by making significantly fewer

errors.

The remainder of this paper is organized as follows: In

Section 2, we give a brief overview of the background and

related work on semantic enrichment of mathematical ex-

pressions. We present our method in Section 3 and describe

the experimental setup and results in Section 4. Section 5

concludes the paper and gives avenues for future work.

2. Related Work

2.1 MathML on the Web
Since mathematical formulas contain both mathemati-

cal symbols and structures, a special markup is required

for their representation. Until recently, images have been

used to represent mathematical formulas on the web. This

type of display does not need any markup language to de-

code the formulas, but it is hard to process them. A way

of dealing with mathematical formulas in this format is to

convert them into another text-based format, for example,

InftyReader [2].

TEX has been used to encode mathematical formulas in

scientific documents. TEX is popular in academia, espe-

cially mathematics, since it provides a text syntax for math-

ematical formulas. A formula is printed in a way a person

would write by hand, or typeset the equation. In some web

pages, such as on the Wikipedia site, formulas are displayed

in both image and TEX formats.

The best known open markup format for representing

mathematical formulas for the web is MathML [4], which

was recommended by the W3C math working group. It pro-

vides a standard way of representing mathematical expres-

sions. It is an XML application for describing mathematical

notations and encoding mathematical content within a text

format. MathML has two types of encoding, content-based

encoding, called Content MathML, dealing with the mean-

ing of formulas, and presentation-based encoding, called

Presentation MathML, dealing with the display of formu-

las. The illustration trees of the Presentation and Content

Markup of the expression arctan(0) = 0 are depicted in

Figure 1 and Figure 2. Besides MathML, there are other

markups such as eqn [13], OpenOffice.org Math [10], ASCI-

IMathML [11], and OpenMath [12], but these markups can

be converted into MathML by using freely available tools.

mrow

mrow

mo

mn

msup

mo

mn mo

= 0

mi mrow

( 0 )tanh

mo mn

- 1

Figure 1: Tree display of Presentation Markup of the ex-

pression arctan(0) = 0
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Figure 2: Tree display of Content Markup of the expression

arctan(0) = 0

2.2 Systems with Semantic Enrichment Fea-
ture

There are not many studies on the semantic enrichment

problem. In this section, we list some of the work on ex-

ploiting the meanings of mathematical expressions.

Grigole et al. [3] proposed an approach to understanding

mathematical expressions based on the text surrounding the

mathematical expressions. The main idea of this approach

is to use the surrounding text for disambiguation based on

word sense disambiguation and lexical similarity. First, a

local context C (five nouns preceding a target mathematical

expression) is found in each sentence. For each noun, the

system identifies a Term Cluster (derived from the Open-

Math Content Dictionary) with the highest semantic simi-

larity according to a similarity metric. The similarity scores

obtained are weighted, summed up, and normalized by the

length of the considered context. The Term Cluster with

the highest similarity score is assigned as the interpretation.

The approach was evaluated on 451 manually annotated

mathematical expressions, and the best result was an F0.5

score of 68.26. To deal with the meanings of mathemat-

ical formulas, Nghiem et al. [7] proposed an approach for

extracting names or descriptions of formulas by using the

natural language text surrounding them. The most accu-

rate extraction result using data from Wikipedia was 68.33

percent.

There are two other projects that deal with the semantic

meaning of mathematical expressions. The first is the Snug-

gleTeX project [5], which provides a free and open-source

Java library for converting fragments of LaTeX into XML

including Content MathML. The other project is Lama-

pun [6]. This project investigates semantic enrichment,

structural semantics, and ambiguity resolution in mathe-

matical corpora. Unfortunately, there are no evaluations of

these systems.

2.3 Method for automatically extracting
translation rules from data

To translate mathematical expressions from the Presenta-

tion MathML into Content MathML format, a list of trans-

lation rules is required. Building these translation rules

by hand is a large undertaking. Our task is inherently

domain-specific; therefore, we devised an approach based

on statistical machine learning for automatically extracting

rules from a dataset.

Statistical machine translation (SMT) is by far the most

widely studied machine translation method. SMT uses a

very large data set of good translations, that is, a corpus

of texts which have already been translated into another

language, and it uses those texts to automatically infer a

statistical model of translation. The statistical model is

then applied to new texts to make a translation of them.

Tree-based or syntax-based SMT can be used for tree-to-

tree translation but it has two drawbacks when it is ap-

plied to the problem of translating Presentation into Con-

tent MathML.

• The first drawback is that tree-based SMT focuses on

generating surface texts rather than tree structures.

Mathematical expressions have strict structures, and

it fails to fulfill this requirement.

• The second drawback is there are many long mathe-

matical expressions in real-world data and translating

long and complex sentences has been a critical problem

in machine translation.

To overcome these limitations, we made two separate rule

sets: fragment rules and translation rules. The details are

described in the next section.

3. Methodology

3.1 System Overview
The framework of the system is shown in Figure 3. The

system has three main modules.

• Preprocessing: This module processes MathML ex-

pressions by removing error expressions or format tags

with no semantic meaning.

• Rule Extraction: This module is given a dataset con-

taining MathML parallel markup expressions, and it

extracts translation rules from the dataset.

• Content MathML Generation: This module is given

mathematical expressions in Presentation MathML

markup and a set of rules, and it generates Con-

tent MathML expressions to enrich the Presentation

MathML expressions.

3.2 Preprocessing
The presentation elements of Presentation MathML

are divided into two classes: token elements and layout

schemata. Token elements represent the identifier’s names,
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Figure 3: System Framework

function’s names, numbers, etc. Layout schemata build ex-

pressions out of parts. After investigating data on the Wol-

fram Function Site, we noticed that there are elements that

have no specific meaning; they are used for display purposes

only and most of them are layout schemata. For example,

the < mtext >< /mtext > or < mspace/ > tags are used

to insert some space between expressions. Another exam-

ple is pairs of parentheses; these are used to indicate that

the expressions in the parentheses go together, despite that

their structure already encodes that information. This pre-

processing step removes these elements. We also remove

mathematical expressions with error markups such as ex-

pressions that have no Content markup. For simplification,

expressions with more than 200 content nodes are also re-

moved.

3.3 Extracting Rules
In the training phase, we use GIZA++ [1] for aligning

Presentation MathML terms and Content MathML terms.

Based on the aligned data, we use heuristics to extract rules

that we call “fragment rules”. Fragment rules are rules

that define the translation from the Presentation MathML

sub-trees to the Content MathML sub-trees. These rules

are used to break up a large Presentation MathML tree

into smaller sub-trees while maintaining the structure of the

output Content MathML trees. These rules are extracted

based on the fact that translating a small tree is easier than

translating a large one. Each rule in the fragment rule set

is associated with a probability, that is, the frequency at

which a rule occurs in the training data. For the expression

arctan(0) = 0, the fragment rule is mrow{mrow[1]mo(=

)[0]mn[2]} → apply{eq[0]apply[1]cn[2]}. The numbers in-

dicate which subtrees should go together between the two

trees. The rule is depicted in Figure 4.

Once the sub-trees cannot be broken down further, we

start to extract other rules, which we call “translation

rules”. We enhance the translation rule set with transla-

tion terms extracted by GIZA++. The pseudo code for

1 2 3 2 1 3 

mrow 

mrow mo mn 

= 

apply 

eq apply cn 

Figure 4: An example of fragment rule

extracting fragment rules is described in Algorithm 1.

Algorithm 1 Extract Fragment Rule

Input: a set of training MathML files parallel markup M

Output: a list of fragment rules FR

Output: a list of translation rules TR

FR← ∅
TR← ∅
A← Alignment(M)

repeat

for all m ∈M do

fr, tr ← ExtractRule(m,A)

FR← FR ∪ {fr}
TR← FR ∪ {tr}

end for

M ← ApplyRule(FR,M)

until NewRule(FR) = 0

return FR, TR

Table 1 shows examples of translation rules, and Table 2

shows examples of fragment rules.

Table 1: Examples of translation rules

< mo > = < /mo > → < eq/ >

< mo > . < /mo > → < times/ >

< mo > /; < /mo > → < ci > Condition < /ci >

< mo > ∈ < /mo > → < in/ >

< mi > n < /mi > → < ci > n < /ci >

< mn > 0 < /mn > → < cn type=“integer” > 0 < /cn >

< mo > == < /mo > → < eq/ >

< mi > m < /mi > → < ci > m < /ci >

< mn > 1 < /mn > → < cn type=“integer” > 1 < /cn >

< mo > - < /mo > → < plus/ >

3.4 Generating Content MathML
In the previous steps, we get two sets of rules, a fragment

rule set and a translation rule set. We then use these rules

for translation. Given mathematical expressions in Presen-

tation MathML markup, the system will generate Content

MathML markup for each expression.

• First, the expression is preprocessed to remove non-

semantic elements.

• Second, the fragment rule is applied to the expression

until it cannot be divided any further.
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Table 2: Examples of fragment rules

mrow { mrow[1] mo( = )[0] mrow[2] }
→ apply { eq[0] apply[1] apply[2] }
mrow { mrow[1] mo( /; )[0] mrow[2] }
→ apply { ci( Condition )[0] apply[1] apply[2] }
mrow { msup[1] mo( . )[0] mrow[2] }
→ apply { times[0] apply[1] apply[2] }
mrow { mrow[1] mo( == )[0] mrow[2] }
→ apply { eq[0] apply[1] list[2] }
mrow { mrow[1] mo( ∝ )[0] mrow[2] }
→ apply { ci( Proportional )[0] apply[1] apply[2] }

• Third, the small sub-expressions in Presentation

MathML markup are translated into sub-expressions

in Content MathML markup by using the translation

rule set. If no translation rule is found for a sub-

expression, that expression is marked as untranslated.

• Last, sub-expressions in Content MathML markup are

grouped to form the complete Content MathML ex-

pression.

Before the last step, we add a heuristic translation to

translate numbers and identifiers in the mn and mi tags.

The translation algorithm is described in Algorithm 2.

Algorithm 2 Translate Presentation to Content MathML

tree
Input: a Presentation MathML tree tp

fragment rules FR

translation rules TR

Output: a Content MathML tree tc

L← ∅
TP ← {tp}
while TP 6= ∅ do

for all t ∈ TP do

TP ← TP \ {t}
if CanNotApplyRule(t, FR) then

L← L ∪ {t}
else

TP = TP ∪ApplyRule(t, FR)

end if

end for

end while

L′ ← ∅
for all l ∈ L do

L′ ← L′ ∪ Translate(l, TR)

end for

tc← RebuildTree(L′, FR)

return tc

4. Experimental Results

4.1 Evaluation Setup
The experiments were carried out using datasets from the

Wolfram Function site. This site was created as a resource

for educational, mathematical, and scientific communities.

It contains the world’s most encyclopedic collection of infor-

mation about mathematical functions. All formulas on this

site are available in both Presentation MathML and Con-

tent MathML format. The datasets we used contain 205,653

mathematical expressions belonging to six categories. All

of these expressions have both MathML Presentation and

Content Markups.

Training and testing were performed using ten-fold cross-

validation; for each category, the original corpus was parti-

tioned into ten subsets. Of the ten subsets, a single subset

was retained as the validation data for testing the model,

and the remaining subsets were used as training data. The

cross-validation process was repeated ten times, with each

of the ten subsets used exactly once as the validation data.

The ten results from the folds then were averaged to pro-

duce a single estimation.

To prove the effectiveness of our models with real data,

we conducted another experiment on the mathematical ex-

pressions in scientific papers. Currently, we have 20 papers

from the ACL archive, and we manually annotated all of the

math expressions in these papers with both Presentation

Markup and Content Markup. We called this data ACL-

ARC. In the first experiment, the data was not compatible

with SnuggleTeX since SnuggleTeX uses ASCII MathML

but the Wolfram Functions site does not. In the second

experiment with ACL-ARC data, we compared our model

with SnuggleTeX. Table 3 lists the various data statistics.

Table 3: Data statistic
Category No. of math

expressions

Bessel-TypeFunctions 1,960

Constants 709

ElementaryFunctions 37,965

GammaBetaErf 2,895

IntegerFunctions 1,612

Polynomials 1,489

ACL-ARC (ACL papers) 2,065

4.2 Evaluation Methodology
Given a Presentation MathML expression e, we assume

that tree A is the correct Content MathML tree of expres-

sion e and tree B is the output of the automatic translation.

The basic idea to evaluate the correctness of tree B is di-

rectly comparing it with tree A. In the experiments, we

extended the conventional definition of “Translation Error

Rate” and used a metric which is a combined version of

• the Tree Edit Distance [9]: the tree edit distance is

the minimal cost to transform A into B using edit

operations. There are three types of edit operation:

substituting a node, inserting a node, and deleting a

node.

• the Translation Error Rate [8]: the translation error

rate is an error metric for machine translation that

measures the number of edits required to change a sys-

tem output into one of the references.
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We called the new metric the Tree Edit Distance Rate

(TEDR). TEDR is defined as the ratio of (1) the minimal

cost to transform a tree A into another tree B using edit

operations and (2) the maximum number of nodes of A and

B. It can be computed using Eq. 1.

TEDR(A→ B) =
TED(A,B)

max{|A|, |B|} (1)

For example, the output tree of the expression

arctan(0) = 0 is depicted in Figure 5. Compared with the

reference tree in Figure 2, we need to substitute 1 nodes,

insert 3 nodes, and delete 0 nodes, so that TED(A,B) = 4,

while the maximum number of nodes of the two trees is 8.

Therefore, TEDR(A→ B) = 4
8

= 0.5.

apply

eq cerror

cn

0

Figure 5: An example output tree of the expression

arctan(0) = 0

4.3 Results Summary
It appeared that SnuggleTeX was not applicable to the

data from the Wolfram Function site since it uses ASCII

MathML but the site does not. Therefore, we could not

do a comparison on this data. Our experimental results

show that our approach gives reasonable results, that is, a

20 percent TEDR with large training data. For small data

(less than 3000 training samples), the results vary from 50

to 75 percent TEDR.

For ACL-ARC data, the experimental results show that

our system significantly outperforms SnuggleTeX in terms

of the Tree Edit Distance Rate. Our system had a 24 per-

cent lower TEDR in comparison with SnuggleTeX.

To investigate the correlation between the TEDR score

and training set size, we set up an experiment using math-

ematical expressions in the Elementary Functions category.

We started with one fifth of the data and increased the data

by one fifth in each run. Our experimental results con-

formed with the theoretical analysis that the more training

data we have, the better the results are.

4.4 Results Details
Table 4 and Table 5 show the TEDR of our method on

the Wolfram Functions Site data and in comparison with

SnuggleTeX on ACL ARC data, respectively.

Table 4: Results on the Wolfram Function Site data
Category Avg. No. Avg. No. TEDR

of FR of TR

Bessel-TypeFunctions 219 3,175 49.36

Constants 210 875 74.22

ElementaryFunctions 635 20,389 20.89

GammaBetaErf 421 4,848 59.89

IntegerFunctions 343 2,368 58.57

Polynomials 275 2,598 67.18

Table 5: Results on ACL-ARC data
Methods TED Total TEDR

Nodes

Our approach 17,562 26,085 67.33

SnuggleTeX 23,820 26,085 91.32

Table 6 and Figure 6 shows the correlation between

TEDR score and training set size.

Table 6: Results on Elementary Functions category with

different data size
Avg. TED Avg. total TEDR

Nodes

31,105 47,351 65.69

43,985 114,413 38.44

55,601 180,305 30.84

62,681 248,464 25.23

66,486 318,282 20.89

5. Conclusions

We discussed the problem of semantic enrichment of

mathematical expressions. Our experimental results show

that our approach based on the statistical machine trans-

lation method for translating a Presentation MathML ex-

pressions to Content MathML expressions is a significant

improvement over prior systems.

As we mentioned before, mathematical notations are

context-dependent. That means we need to consider not

only surrounding expressions but also the document that

contains the notations in order to generate the correct se-

mantic output. In the scope of this paper, we only con-

sidered the first sort of context information. Since this is

a first attempt to translate from Presentation to Content

MathML using a machine learning method, there is room

for further improvement. Possible improvements are

• Increasing the training data so the system can cover

more mathematical notations

• Expanding the work by incorporating the surrounding

information of mathematical expressions, for example,

definitions or other mathematical expressions.
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Figure 6: Correlation between TEDR score and training set

size

Our approach combining automatic extraction of frag-

ment rules and translation rules has shown promising re-

sults. The experimental results confirm that it would be

helpful for automatic understanding of mathematical ex-

pressions. However, this is only a first step; many impor-

tant issues remain for future studies. Currently, our system

deals with a limited range of mathematical notations. In

the future, we should consider expanding it to cover all

mathematical notations.
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