
The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012 

- 1 - 

 
A New Classification for Multiclass Imbalanced Datasets Based on 

Clustering Approach 

Wanthanee Prachuabsupakij
*1

              Nuanwan Soonthornphisaj
*2

 

Department of Computer Science, Faculty of Science, Kasetsart University, Thailand 

The new approach called C-MIEN - Clustering with hybrid sampling approaches for Multiclass Imbalanced 

classification using Ensemble models is proposed in this paper to improve the performance of classifier for multiclass 

imbalanced datasets without the decomposition method.  We focus on the multiclass imbalance problem because this 

problem can be found in many real world applications. Multiclass imbalance problem occurs when the number of 

instances of the one class is much higher than in the remaining classes in the dataset. The aim of this paper is to develop 

a resampling approach that can effectively classify multiclass imbalanced datasets. Firstly, K-means is used to split the 

set of instances into two clusters. For each cluster, hybird  sampling methods are used.  Then, final training sets are used 

to build an emsemble. Finally, the prediction is obtained by combining the results from both clusters through a majority 

vote. We have conducted experiments on many multiclass datasets from the UCI. We use different classifiers in order to 

observe the performance and suitability of our purpose within each classifier. We carry out the experimental study with 

the several well-known algorithms such as Decision Trees,  Naïve bayes, and   K-Nearest Neighbors (k=1,3).   The   

performance   is  measured  based on G-mean and F-measure. The experimental results show that C-MIEN achieved 

higher performance than state-of-the-art methods. Moreover, the empirical results show that C-MIEN algorithm is a 

practical algorithm since it can be applied to many classifiers. C-MIEN attain better overall performance on Decision tree 

classifier compared to Naïve Bayes classifier. 
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1. Introduction 

The classification based on the imbalanced training datasets is 

one of the most widely found problems in data mining, machine 

learning domains.   In two-class imbalanced dataset, the problem 

occurs when the number of instances of the one class 

(majority/negative class) hugely outnumbers another class 

(minority/positive class). The classification on imbalanced data 

always causes problems because traditional classification 

algorithms tend to be overwhelmed by the majority class and 

ignore the minority class.  The result is that predictions based on 

the majority class have a high possibility to get good 

performance, whereas the predictions based on minority classes 

generally have poor performance results, because most classifiers 

operate on data drawn from the same distribution as the training 

data. Therefore, the prediction of minority class is more 

significant in those cases than the prediction of majority class. 

Datasets obtained from many real-world applications are highly 

imbalanced, such as text categorization, bioinformatics[Batuwita 

et al., 2009], intrusion detection and fraud detection. Most 

methods solved the two-class imbalance problem such as 

[Benjamin et al., 2008; Yen et al., 2009; Chen et al., 2010]. We 

found that the problems of multiclass classification on 

imbalanced data are found in few studies. 

The solutions of the class imbalanced problem have been 

proposed both at the data level [Han et al., 2005; Yen et al., 

2009] and  algorithm level [Tian et al., 2011; Wang et al., 2011]. 

The data level is usually based on the resampling method, which 

deals with the distribution of dataset before the classification 

process. Resampling method includes oversampling and 

undersampling. The algorithm level aims to adjust algorithm 

itself by provide searching for the unequal weights for the 

minority and majority classes in the training process to force the 

classifier to recognize the minority class. 

In multiclass imbalance problems, the classification is even 

more complicated. Moreover, the higher degree of class 

imbalance may increase the difficulty of multiclass classification. 

There are multiple ways to solve multiclass imbalanced problems. 

One way is to decompose the multiclass dataset into a  series  of  

binary  classification problems and then  use a two-class  learner 

for  classification such  as One-Against-One (OAO) [Tian et al., 

2011],  One-Against-All (OAA) [Chen et al., 2010].  Several 

decomposition methods use ensemble approach to combine the 

models obtained from the binary class classifiers. Ensemble 

models have been more attention because it can average 

prediction errors and reduce bias and variance of errors.  

However, using decomposition with sampling technique is not 

practical for this problem because they are time consuming.  

Another way is to adjust the original classifiers to multiclass and 

imbalance cases [Sun, 2006; Shuo et al., 2009; Navarro et al., 

2011]. Imbalance learning on multiclass problem is more 

interesting than two-class problem because this problem can be 

found in many real world applications.  We found that there is 

very few reported work in literature addressing the multiclass 

imbalance problem. In spite of that it is a serious problem in data 

mining. 

The aim of this paper is to improve the classification 

performance based on the multiclass imbalanced datasets. In this 

paper, we introduce a new resampling approach based on 

Clustering with hybrid sampling approaches for Multiclass 

Imbalanced classification using Ensemble models (C-MIEN), 
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which does not apply decomposition technique.   The proposed 

method is a data level approach. We proposed the data level 

approach because it will not be limited in algorithms themselves. 

C-MIEN  uses the clustering approach to create a new training 

set for each cluster and apply two resampling technique to 

rebalance the class distribution.  C-MIEN improves the 

classification performance based on the multiclass imbalanced 

datasets in three ways.  Firstly,  k-means is used to split the set of 

instances into two clusters. Then, for each cluster, two 

resampling techniques (oversampling and undersampling) are 

applied on the the training set in order to balance the class 

distribution. Finally, ensemble approaches are used to combine 

the models obtained with our method through a majority vote 

from both clusters. 

C-MIEN has been applied from our previous work named 

KSMOTE [Prachuabsupakij et al., 2012].  KSMOTE operates by 

decision trees algorithm. Meanwhile, in this paper, we carry out 

the experimental study with the several well-known algorithms 

such as Decision Trees, Naïve bayes, and K-Nearest Neighbors 

(k=1, 3) using ensemble methods.  We have conducted 

experiments on many multiclass datasets from the UCI. These 

datasets consist of two types of class distribution; high and low. 

We use different classifiers in order to observe the performance 

and suitability of our purpose within each classifier. The 

performance is measured based on G-mean and F-measure.   

The experimental results show that C-MIEN achieved better 

performance than baseline algorithms. Moreover, the empirical 

results show that C-MIEN algorithm is a practical algorithm 

since it can be applied to multiclass imbalanced datasets. The 

characteristic of C-MIEN is to create two new training sets that 

consist of the new label of instances with similar characteristics. 

This step is applied to reduce the number of classes then the 

simpler problem can be easily solved by C-MIEN.   
 In summary, we proposed a new approach which consists of 

the contribution as follow: 

 We develop a new algorithm to reduce the complexity of 

multiclass imbalance classification. It creates the new 

training sets with similar characteristic instances based 

on clustering approach.  

 We carefully design the experiments and analyze the 

behavior of C-MIEN to demonstrate that our method can 

be applied to several well-known algorithms when the 

datasets are multiclass imbalanced problems. 

The rest of the paper is organized as follows:  Section 2 

presents some of the approaches previously applied to deal with 

the class imbalance problem. Section 3 describes our approach 

while Section 4 we describe our benchmark datasets, the 

experimental and report on the experimental results. Finally, 

Section 5 is the conclusion.   

2. Related work 

2.1 The class imbalance problem 

Recently, many real world applications have the imbalanced 

class distribution problem such as text classification, fraud 

detection, information retrieval and so on.  Researchers have 

proposed many classifiers to solve this problem such as decision 

tree, k-nearest, Naïve Bayes , and Support Vector Machines. 

They found that the performance of  the majority classes are high 

whereas the prediction performance of  the minority classes tends 

to be low, nevertheless the prediction of minority class is more 

significant in some domains.  

Two different approaches to solve the class imbalance problem 

are   data level and algorithm level methods. Data level methods 

aim to solve problems by manipulate the distribution of a training 

set, including over-sampling and under-sampling methods. Both 

methods decrease the overall level of class imbalance. 

Sometimes this can involve a combination of the two methods.  

Algorithm level methods adapt existing learning algorithms to 

pay more attention to the minority classes. In this study, we will 

focus on the class imbalance problem at the data level methods. 

Oversampling reduces the degree of imbalanced distribution 

by increase the size of minority class either by duplicates or 

interpolates minority instances.  The basic oversampling method 

is random oversampling (ROS). It balances the class distribution 

by randomly duplicates minority instances into the minority class. 

SMOTE is one of the famous oversampling methods by Chawla 

[Chawla et al., 2002].  SMOTE produce synthetic minority class 

instances by interpolating between minority examples that lie 

together. It makes the decision regions larger towards majority 

class and less specific. Synthetic examples are introduced along 

the line segment between each minority class example and one of 

its k minority class nearest neighbors. SMOTE reduce the 

imbalanced class distribution without causing overfitting as 

shown in many studies [Chawla et al., 2002; Chawla et al., 

2003].  Jo et al. [Jo et al., 2004] proposed cluster-based 

oversampling algorithm. It creates the independent clusters from 

the minority and majority classes, and then randomly does 

oversampling for each of the majority clusters, except the largest 

cluster. This is done with replacement until all of the majority 

clusters contain the same number of instances as the largest 

cluster.  The algorithm then oversamples each of the minority 

clusters with replacement until the number of instances in each 

minority cluster is equal to the number of instances in a majority 

cluster after oversampling divided by the number of minority 

clusters. 

 On the other hand, undersampling is supposed to reduce the 

number of instance from the majority class in order to achieve  a 

more balanced class distribution. The simple undersampling 

method is random undersampling (RUS). It randomly discard 

instances of a majority class until the ratio between the minority 

and majority class is at the desired level.  Another method uses 

partitioning and various techniques to break the majority class 

into n disjoint partitions, and combining the n models to make a 

final classification by Yan et al [Yan et al., 2003].  Yen et al. 

proposed a cluster-based undersampling to determine the number 

of selected majority class samples in each cluster by using 

expression, and then randomly select the majority class samples 

in each cluster. Then, the algorithm selects the majority class 

samples randomly from each cluster and combines them with the 

minority class samples to form a new dataset. 

2.2 Ensemble classifiers for imbalanced datasets 

In recent years, ensemble learning is primarily used to improve 

the performance of the imbalanced classification [Opitz et al., 

1999; Sun, 2007; Lin et al., 2009; Yun et al., 2010; Tian et al., 
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2011]. Two well-known ensemble methods are Bagging 

[Breiman, 1996] and Boosting [Freund et al., 1996], which are  

very successful in improving the accuracy of the certain 

classifiers.  In imbalanced problems, there are several methods 

that combine both ensemble learning algorithms and resampling 

techniques.  

Chawla et al proposed the SMOTEBoost algorithm [Chawla et 

al., 2003]. In each iteration of boosting, it utilize SMOTE to add 

the new minority class and increase the sampling weights for the 

minority class instance. Another method is SMOTEBagging 

[Shuo et al., 2009].  This method combines three popular 

resampling methods; undersampling, oversampling, and 

SMOTE; into  the ensemble model based on Bagging for 

diversity analysis.  Yang et al presented the EnSVM [Yang et al., 

2010]. This algorithm concerned with improving the 

performance of the Support Vector Machines (SVMs) on 

imbalanced datasets. It integrates two types of sampling methods 

by starting with oversampling the minority class to a moderate 

extent. For undersampling, it uses the bootstrap sampling 

approach. The size of the new majority class is the same as that 

of the minority class obtained from SMOTE. The ensemble of 

SVMs is employed to boost the performance.   

2.3 Multiclass classification in imbalanced datasets 

Many researchers focus on the imbalanced dataset 

concentrated for two-class classification [Shengguo et al., 2009; 

Yen et al., 2009; Geiler et al., 2010; Nguwi et al., 2010; Yang et 

al., 2010].  In case of multiclass datasets, there are two or more 

minority classes with respect to one majority class.  Therefore, 

this problem can be solved in multiple ways. One typical way is 

the decomposition techniques, which decompose the multi-class 

classification into several binary classifications such as One-

Against-One and One-Against-All. However, some two-class 

techniques were not useful when applied to multiclass problem 

directly, especially in the case of imbalanced datasets [Zhu, 

2007].  

 Consider the decomposition method, there are some methods 

that combine both resampling and binary classification 

approaches. One of these methods was introduced by Fernndez et 

al.[Fernández et al., 2010]. They applied an over-sampling step 

before the pair-wise learning process. The quality of this method 

can be tested using the linguistic fuzzy rule based classification 

system and fuzzy hybrid genetics-based machine learning 

algorithm.  

There are not many works addressing the genuinely imbalance 

multi-class problem. One of these approaches uses a dynamic 

over-sampling method that incorporated into a memetic 

algorithm (MA) and uses RBFNNS as the classification model 

[Navarro et al., 2011].  The authors propose two different 

methodologies which add an over-sampling method: the static 

smote radial basis function (SSRBF) and the dynamic smote 

radial basis function (DSRBF). DSRBF modifies the 

oversampling procedure within the learning process.  AdaC2.M1 

[Sun, 2006] develops a cost-sensitive boosting algorithm to 

improve the classification performance of imbalanced data 

involving multiple classes. AdaC2.M1 extended the original 

AdaBoost [Freund et al., 1997] and AdaC2 [Sun et al., 2005] 

algorithms to multiclass cases.  Another method was proposed by 

Shuo et al.[Shuo et al., 2009], who explores the impact of 

diversity on each class and overall performance. They combine 

undersampling, oversampling and SMOTE methods into 

ensemble model based on both two-class and multiclass datasets. 

In multiclass dataset, the algorithm controls the resampling rate 

with a%. It refers to sampling rate of majority class and other 

classes.  Therefore, for each class, ith, algorithm resample 

instances with replacement at the rate of (NC/Ni)a%, where NC is 

the number of class of majority class and the ith class has Ni 

number of training instances.  

3. C-MIEN 

In this section, we present a new sampling method based on 

clustering approach called C-MIEN. The algorithm does 

clustering with hybrid sampling approaches for Multiclass 

Imbalanced datasets using Ensemble method. C-MIEN aims to 

improve the performance of multiclass learning from an 

imbalanced dataset. In case of multiclass imbalanced dataset, it is 

more difficult to define the majority and minority classes. 

Therefore, we want to reduce the number of classes in the 

multiclass training set without the decomposition method. The 

training patterns include three steps. The first step is a 

reclustering process using the k-mean algorithm. The main idea 

is that the multiclass dataset is divided into small subsets based 

on clustering approach. Due to the use of the clustering method, 

most instances for each subset seem to have similar 

characteristics. Second, we apply two resampling techniques in 

order to rebalance the class distribution called rebalancing 

process. The benefit of doing two resampling methods in C-

MIEN is   mitigating the overfitting and information loss 

problems.  

The final step is to train base classifiers independently on 

every subset of the new training dataset for each cluster and     

combine all models using a new majority vote from both clusters. 

The main reason is that multiple classifiers are expected to be 

more robust and satisfactory than a single classifier. The 

framework of C-MIEN is shown in Fig. 1 and the C-MIEN 

algorithm is detailed in Table 1.  

3.1 Reclustering Process 

Given the multiclass training set, the reclustering process is 

performed using k-means algorithm.  The main idea of this step 

is to split all instances into certain number of clusters fixed a 

priori.  C-MIEN divides all instances into two clusters by setting 

k to be 2. In order to measure the distance between two instances, 

we use the Euclidean distance, which is a useful measure of 

distance and also the simplest.   

In this step, we assume that applying the clustering algorithm 

on multiclass datasets may improve the performance of the 

resulting classifier; because the members in the cluster have 

similar characteristics.  Moreover, split training sets can also 

decrease complicated sampling in multiclass dataset.  
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Table 2  An example of the reclustering approach on pageblock   

               dataset. 

Clusters Classes 

Number 

of 

Instances 

per class 

 Combined and relabled classes 

Sample 

sets 
Classes 

Number 

of 

Instances 

per class 

 1 (C1) 

text 4913 

 1 (S1) 

text 4913 

graphic 28 graphic 28 

picture 115 picture 115 

total 5056 R1 417 

 2 (C2) 

horiz 329 

 2 (S2) 

horiz 329 

vert 88 vert 88 

total 417 R2 5056 

 

  Considering the instances for each cluster, let Nyi denotes the 

number of data instances of class yi in training dataset.  Let C1 

and C2 denote the first cluster and the second cluster respectively. 

If Nyi  in C1  is greater than Nyi  in C2 then all instances of class yi 

in both clusters are  assigned to C1. On the other hand, if Nyi  in 

C2 is greater than Nyi in  C1 then all instances  of class yi in both 

clusters are assigned to C2.   Consequently, we get two set of the 

samples, which are different classes.  After that, the classes from 

both clusters are combined using relabeling of classes group. For 

example, classes (Y1, Y2 and Y3) in the first cluster are combined 

with all classes in the second cluster that were relabeled as same 

label (R2). Meanwhile, classes (Y4, and Y5) in the second cluster 

are combined with all classes in the first cluster that were 

relabeled (R1) as well.  The output of this process is two set of 

new sample, S1 and S2. Note that, S1 consists of classes Y1, Y2 , 

Y3, and R2.  On the other hand S2 consists of classes Y4, ,Y5 and 

R1.  Table 2 shows an example on pageblocks dataset, which is 

adjusted in the reclustering process.  

3.2 Data Rebalancing Process 

After the re-clustering process is finished, the data rebalancing 

process is started. (We get two set of new sample, S1 and S2.) In 

order to rebalance the class distribution, we integrate two 

sampling techniques, SMOTE and random under sampling. The 

Table 1  The pseudo-code for C-MIEN algorithm. 

Algorithm 1:  C-MIEN 

Input:  

1) Given S {(x1,y1),….,(xn,yn)}  xiX,  with labels  

     yi    Y = {1…L} 

2) ymk = the over majority class of Sk, Nyi = the number of 

instances of class yi 

3) k = number of classes for the  cluster (k=2) 

4) IR = imbalance ratio between yLk  and remaining classes 

of Sk 

1. Begin: 

2. 1) C= Kmeans(S,k) 

3. 2) let  C1 = cluster1 ,C2 = cluster2  

4. 3) for each classLabel yi    

4)   if(Nyi in C1) >( Nyi in C2) then  xyi is assigned to C1 

5. 5)    else xyi is assigned to C2 

6. 6) end for 

7) temp = C2 //temp contains all instances in cluster, C2 

8) for k = 1 to 2 

9)       Rk ,Tk =  ∅ 

10)     for each xi in Ck 

11)         xi = relabel(xi) 

12)         Rk = Rk   xi 

13)     end for 

7.    14)     Sk= Rk   temp  

15)     temp = C1 

16)     for each class ik  do 

17)         If IR > 1.5 then     
   = SMOTE(yik) else    

    = yik  

        18)         Tk = Tk      
    

        19)     end for 

          20)         
    = Random undersampling(yLk) with d instances 

        21)    Tk = Tk      
    

22)     for j = 1 to M do 

23)          hkj = BaseClassifier(Tk) 

        24)     end for   

25)end for 

Output: The output hypothesis H* is calculated as follows: 

               if majority vote of h1 = R2 then   

   H* = majority vote of h2 

               else   H* = majority vote of h1 

Y1 Y2 Y3

Y1 Y2 Y3 Y4 Y5

k-means 

(k=2)

C1 C2

R1 R2
Y4 Y5

Consist of Consist of

Multi-class training set

Reclustering

Process

Y1 R2

Oversampling with IR

 Data

Rebalancing

Process

Final classfication

H* : based on majority vote

Classifier 1 Classifier 2 Classifier m…….

Bootstrap

Ensemble 

Systems

Testing 

data

Classifier 1 Classifier 2 Classifier m…….

Bootstrap

Ensemble 

Systems

Testing 

data

 New samples (S1) consist of classes

Y1,Y2,Y3,R2

New samples (S2) consist of classes

Y4,Y5,R1

relabeled relabeled

Y2 Y3 R1Y4 Y5

Y1 R2Y2 Y3

Y1 R2Y2 Y3

Oversampling with IR

Y1 R2Y2 Y3

Undersampling

R1Y4 Y5

Oversampling with IR

R1Y4 Y5

 Undersampling

Final Training sets

Minority 

Classes
Over 

Majority 

Class

Fig.1  The framework of C-MIEN algorithm   (suppose that there are  

           five classes) 
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benefit of SMOTE is to alleviates the overfitting problem.  
Given a  training dataset  in k cluster (k=2) {xi,yi} , i = 1 to n, 

where xi ∈ X is the ith instance and yi ∈  {1,2,….,L} is the ith 

class label. Xyi is all instances of class yi. These classes are sorted 

by the number of classes. Therefore, NyL is the number of 

instances of class having the largest number of instances called 

“over majority class”.  For other classes, the typical of class may 

be either a minority class or a normal class depending on the 

class distribution. The minority class with the smallest number of 

instances is called “under minority class”. Suppose that there are 

H minority classes, SMOTE algorithm is produced in C-MIEN 

(L-H) times.  

For each cluster, the process starts by sorting the number of 

classes.  Then, over majority class is defined.  Considering 

resampling rate in multiclass cases, we use imbalance ratio (IR) 

[Orriols-Puig et al., 2009; Fernndez et al., 2010]. The imbalanced 

ratio is defined as the fraction between the number of instances 

of the over majority and the minority classes (NyL / Nyi).  If other 

classes (yi…yL-1) contain a value of IR higher than 3 (a 

distribution of 75-25%), the oversampling method is applied for 

instances of class yik. We got new synthetic instances of class 

yik     
       This step is called “firstover”. After that, the 

imbalanced ratio of firstover is examined. In case that its value is 

higher than 1.5 (a distribution of 60-40 %), xyi are interpolated by 

doing oversampling, which is “lastover” step. For the final 

training set (Tk), we use random undersampling technique to 

reduce d instances of the over majority class, where d is the 

different number of instances among the under minority class 

obtained from the rebalancing process (firstover and lastover 

steps).   Therefore, we got totally two new final training sets 

from both clusters (T1 and T2).  

3.3 Classification process using ensemble methods 

   In this process, we improve the performance of classifier 

using an ensemble approach that can reduces the variance and/or 

bias of a set of classifiers. It has been demonstrated in many 

studies. Moreover, generalization ability of sampling technique 

with a single classifier is always unsatisfactory and robustness 

are often poor [Haifeng et al., 2010]. In this way, we build 3 

classifiers as ensemble members for each cluster. We get totally 

six hypotheses from two clusters. 

The prediction is done using majority vote method  from all 

hypotheses of two clusters. In this paper, we present new 

implementations of the majority vote. The detail of majority vote 

are implemented as follows: Given a test example, if the final 

prediction obtained from the majority vote among three 

hypotheses of S1 is equal to R2 then the classification is depend 

on the majority vote of hypotheses of S2. Otherwise, the 

prediction will rely on the majority vote of three hypotheses of S1. 

In our experiments reported in Section 5, we set M to be 3, and 

the class of a instance is assigned through the majority vote from 

two clusters.  

4. Experiments 

4.1 Benchmark Datasets and experimental design 

C-MIEN is applied to 7 datasets taken from the UCI 

Repository for Machine Learning [Asuncion et al., 2007]. Four 

of them are highly imbalanced datasets whereas the imbalance 

ratios of the rest three datasets are low. The selected datasets are 

multiclass problems and different numbers of instances, features 

and classes. The four datasets with highly imbalance are car, 

ecoli, page-blocks and yeast.   Besides, three datasets with low 

imbalance ratios are balance-scale, glass, and new-thyroid. All 

datasets were separated into two clusters to reduce sampling 

complexity. Since the aim of C-MIEN is to show the 

effectiveness of C-MIEN to improve the performance of 

multiclass learning from an imbalanced datasets, the datasets 

selected have a considerable on imbalance rate and the number of 

classes.  Table 3 lists the information of each dataset. 

 The experimental software was developed based on WEKA 

3.6.0 framework [Witten et al., 2005]. All experiments, the 

parameters were optimized using a 10-fold cross validation 

strategy. Euclidean distance was used to compute the distance 

between instances and cluster in the k-means algorithm.    For 

each cluster, the number of iterations of the ensemble method is 

equal to 3 (M). 

4.2 Algorithms used for the study 

In the empirical study, we have selected several well-known 

Machine Learning algorithms as base classifiers including 

decision tree, k-nearest neighbor, and naïve bayes.   These 

algorithms can be applied to solve the multiclass problems 

without decomposition techniques. Nevertheless, these 

traditional learning algorithms do not perform well on imbalance 

problems especially those which are multiclass dataset.   

We chose these algorithms because they are commonly used, 

and represent completely different learning mechanisms.  

Table 3  Characteristics of 7 datasets used for experimentation. 

Datasets Size 
No. of 

Features 

No. of 

Classes 

Over 

majority 

(OMa) 

Under 

minority 

(UMi) 

Name 

of OMa  

Name 

of Omi 

Number of instances 

per class 
IR 

balance-scale    625   4   3   288 49 L R 288, 49, 288 5.88 

car1  1728   7   4 1210 65 unacc v-good 1210, 384, 69, 65 18.62 

ecoli    336   8   8   143  2 cp imL 

143, 77, 52, 35, 20, 5, 

2, 2  71.50 

glass   214 10   6    76  9 two six 70, 76, 17, 13, 9, 29 8.44 

new-thyroid   215   6   3  150 30 1 3 150, 35, 30 5.00 

page-blocks  5473   11   5 4913 28 text graphic 4913, 329, 28, 88, 115 175.46 

yeast  1484    9 10 463  5 CYT ERL 
463, 429, 244, 163, 51, 

44, 37, 30, 20, 5 
92.60 
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Table 4   Parameter specification for base classifiers  

               employed in our experiment. 

Classifiers Parameters 

Decision 

tree 

Prune = true 

Confidence level = 0.25 

Minimum number of item-sets per leaf = 2 

KNN K= 1, K=3 

Nearest neighbor search algorithm = 

LinearNNSearch 

Distance metric = Euclidean distance 

 
Table 5  Confusion matrix for a classifier in the multi-class  

               classification.. 

Actually 

Class 

Predicted class 

 C1 C2 …… Ck 

C1 n11 n12 …… n1k 

C2 n21 n22 …… n2k 

. . . . . 

. . . . . 

Ck nk1 nk2 …… nkk 

 

Table 6   Measures for multi-class classification using the  

               notation of Table 4 [Sun, 2006]. 

Measure Formula Detail 

Precisioni (Pi) 
   

    
 
   

 Precision of class Ci 

 

Recalli (Ri) 
   

    
 
   

 Recall of class Ci 

 

Fi-measure 

 

      
     

 
F-measure of class Ci 

G-mean 

    

 

   

 

   

 

G-mean of recall values 

of every classes 

 

Decision tree is an induction approach for building classification 

model.  K-nearest neighbor is an instance-based learning 

algorithm and Naïve bayes is an incremental learning algorithm. 

Moreover, these classifiers are very popular and are applied to 

solve the imbalanced problems. However, in order to estimate the 

performance of C-MIEN, we study the effects of our method 

with various different classifier algorithms. 

The configuration parameters for the base classifiers are 

shown in Table 4. For KNN algorithm, we considered two 

configurations, the first is the one nearest neighbor and the 

second is the three nearest neighbors, so we analyzed them as 

two different base classifiers 1NN and 3NN.  For Naïve bayes 

classifier, we set the default parameters from WEKA for 

implementation.  

The C-MIEN method is compared to different algorithms: 

 The single baseline algorithms without re-sampling data 

(C4.5, 1NN, 3NN, and NB). 

 The single baseline algorithm with oversampling using 

SMOTE (SC4.5, S1NN, S3NN, and SNB). 

 Ensemble of baseline algorithms (EC4.5, E1NN, E3NN, 

and ENB). 

 Ensemble of baseline algorithm with oversampling using 

SMOTE (ESC4.5, ES1NN, ES3NN, and ESNB). 

We chose SMOTE algorithm because it generally shows better 

performance than new intelligent sampling approaches as shown 

in many previous works. [Han et al., 2005; Seiffert et al., 2010]. 

For ensemble approach, it is chosen because it was used to solve 

many imbalanced data problems [Yan et al., 2003; Benjamin et 

al., 2008].  Moreover, KNN, NB and C4.5 algorithms are 

sensitive to the amount of negative training examples.  

4.3 Evaluation measures 

In our experiments, we used two evaluation measures:           

F-measure, and Geometric mean (G-mean).   Since we focus on 

multi-class classification, the confusion matrix has been applied 

as shown in Table 5.  Where Ci denotes the class label of the ith 

class and k is the number of classes.  The evaluation measure of 

multi-class classification  was proposed by  Y.Sun [Sun, 2006] as 

shown in Table 6. Kubat et al [Kubat et al., 1998] suggested to 

use the G-mean as the geometric means of recall values of two 

classes. In  multiclass  cases,  Sun  et  al   [Sun, 2006]  defined 

G-mean of recall values of every classes as shown in Table 6. As 

each recall value representing the classification performance of a 

specific class is equally accounted, G-mean is capable to measure 

the balanced performance among classes of a classification 

output.  The G-mean and F-measure value are in the [0, 1] range. 

If G-mean value is equal to 1, it means that all minority class 

instances are identified. On the other hand, if its value is equal to 

0, it means that none of the minority class instances are predicted 

correctly.  

4.4  Results and Analysis 

In this subsection, the C-MIEN method is compared to 

baseline algorithms and oversampling approaches on seven 

datasets. The purpose of this section is to show that incorporating 

the sampling approaches before the learning algorithm can 

improve the performance of classifiers in multiclass imbalanced 

dataset, especially in the class which is more difficult to classify.  

Moreover, to show the effectiveness of C-MIEN, we perform the 

experimental study with four algorithms; C4.5, 1NN, 3NN, NB.   

4.4.1 Effectiveness of C-MIEN on C4.5 

We first compare the performance of C-MIEN with C4.5 

method.  Table 7 and Table 8 show the performance of each 

method in terms of the F-measure and G-mean respectively. The 

results show that C-MIEN mitigate the imbalanced data problem 

and achieves the highest F-measure score on all datasets.  These 

results indicate that C-MIEN is the most suitable algorithm for 

multiclass imbalanced datasests when C4.5 is used as a base 

classifier. Consider on Table 8, we found that G-mean values of 

C-MIEN are superior to other methods on most of the datasets. 

Meanwhile, the G-mean value of SC4.5 seems to provide better 

result on ecoli dataset.  Analyzing the results on Table 7 and 

Table 8, C-MIEN obtains a mean of F-measure values of 0.90 

while the mean of F-measure values of the other classifiers rage 

between 0.71 and 0.78.  In addition, the mean of G-mean values 

of C-MIEN is equal to 0.93. It is better than ESC4.5, which got 

0.86 on mean of G-mean value, which is the second-best 

performance. On balance_scale, C4.5 obtains 0.00 on G-mean 

value, whereas up C4.5 with oversampling method improves     

G-mean value a bit (24.67%). However, C-MIEN achieve the 
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best performance in term G-mean on balance_scale dataset 

(82.50%). 

4.4.2 Effectiveness of C-MIEN on 1NN 

The results of F-measure and G-mean values with 1NN 

classifier are summarized in Table 9 and Table 10 respectively.  

The confidence of the base classifier is always 1 for the 

predicted class. Therefore the results using VOTE are 

completely equivalent.  The results show that the F-measure of 

C-MIEN is the best F-measure performance on most datasets 

except for E1NN which outperforms C-MIEN on new-thyroid 

dataset. (which has the lowest imbalance ratio of 5.)  On new-

thyroid dataset, C-MIEN is a bit less than E1NN (the difference 

is equal to 0.005). From Table 9, we found that using a simple 

oversampling and oversampling with ensemble methods are not 

the best strategy to solve the multiclass imbalance data in term of 

1NN as a classifier. Consider the page-block dataset, which     

has the  highest  imbalance  ratio (175.46).  We found that, the      

F-measure of C-MIEN is higher than other methods (1NN, 

S1NN, E1NN, and ES1NN) about 1.68%, 3.82%, 1.7%, and 

3.97% respectively. These results of highly imbalance ratio 

confirm that SMOTE and SMOTE with Ensemble algorithms do 

not improve the classifier performance when 1NN as a classifier. 

Table 10 reveals that C-MIEN obtained the best G-mean results 

on most of datasets compared to other algorithms. These results 

indicate that C-MIEN can make correct prediction on the 

minority class efficiently than other methods. However, SMOTE 

obtains the highest G-mean value on new-thyroid dataset.  

Analyzing from Table 9 and Table 10, we found that the mean of 

both measures of C-MIEN (0.92) is superior to other methods 

(0.76).  On new-thyroid dataset, both F-measure and G-mean 

values of C-MIEN is less than E1NN and S1NN respectively. 

Consider on balance-scale and ecoli datasets, G-mean values of 

both 1NN and E1NN methods are equal to 0.00, these results 

indicate that both methods predict very poor on the minority 

class instances.  

4.4.3 Effectiveness of C-MIEN on 3NN 

We conducted another experiment using 3 nearest neighbors 

and found that the performance of C-MIEN is better than other 

methods (see Table 11, 12).  Consider the glass dataset which has 

a large number of classes and features but it has a few number of 

instances per class, we found that C-MIEN outperforms other 

methods. C-MIEN obtains 81.93%, whereas S3NN got 72.68%   

on F-measure value which is the second-best performance. In 

term of F-measure, the results reveal that C-MIEN obviously 

improves the performance of classification on multiclass 

imbalanced dataset. 

Table 12 presents the performance of all methods measured in 

term of G-mean. From Table 12, the performance of C-MIEN is 

better than state-of-the-art methods in most imbalanced datasets. 

However, S3NN obtained the best result on balance-scale dataset, 

which the imbalance ratio is low (5.88).  On car dataset, G-mean 

value of C-MIEN is greatly better than other methods.  Therefore, 

it confirms that, C-MIEN can perform very well on the minority 

class instances with car dataset. Consider on three datasets 

including glass, new-thyroid, and yeast, classification based on 

ensemble method cannot improve the performances of baseline 

classifier. On the other hand, ensemble method slightly reduces 

the classification performance. Consider on ecoli dataset, 3NN 

and E3NN obtain 0.00 on G-mean value like balance-scale 

Table 7  F-measure comparison among four methods and       

C-MIEN on Decision tree classifier (C4.5).   

Datasets C4.5 SC4.5 EC4.5 ESC4.5 C-MIEN 

balance-

scale 
0.7497 0.7975 0.7835 0.8130 0.8415 

car1 0.8585 0.9301 0.8577 0.9154 0.9831 

ecoli 0.8360 0.9153 0.8350 0.9221 0.9342 

glass 0.7090 0.7035 0.7176 0.6820 0.8248 

new-

thyroid 
0.9469 0.9644 0.9477 0.9642 0.9772 

page-

blocks 
0.9845 0.9778 0.9723 0.9798 0.9995 

yeast 0.5288 0.4956 0.5437 0.5147 0.9244 

 
Table 8   G-mean comparison among four methods and 

 C-MIEN on Decision tree classifier (C4.5).   

Datasets C4.5 SC4.5 EC4.5 ESC4.5 C-MIEN 

balance-

scale 
0.0000 0.7844 0.2467 0.7989 0.8250 

car1 0.9153 0.9713 0.9143 0.9592 0.9872 

ecoli 0.9534 0.9689 0.9519 0.9707 0.9611 

glass 0.7845 0.8232 0.7933 0.8051 0.8785 

new-

thyroid 
0.9094 0.9715 0.9051 0.9720 0.9762 

page-

blocks 
0.9174 0.9829 0.9186 0.9839 0.9996 

yeast 0.6953 0.6849 0.6997 0.6934 0.9615 

 
Table 9   F-measure comparison among four methods and  

 C-MIEN on K-nearest neighbor classifier (1NN).   

Datasets 1NN S1NN E1NN ES1NN C-MIEN 

balance-

scale 
0.8420 0.7990 0.8210 0.8060 0.8475 

car1 0.8795 0.9013 0.8497 0.8876 0.9543 

ecoli 0.9318 0.9206 0.9351 0.9264 0.9353 

glass 0.7324 0.7064 0.7177 0.7138 0.8389 

new-

thyroid 
0.9720 0.9480 0.9830 0.9750 0.9825 

page-

blocks 
0.9794 0.9580 0.9792 0.9565 0.9962 

yeast 0.4956 0.5027 0.4956 0.5104 0.9065 

 
Table10   G-mean comparison among four methods and           

C-MIEN on K-nearest neighbor classifier (1NN).   

Datasets 1NN S1NN E1NN ES1NN C-MIEN 

balance-

scale 
0.0000 0.8655 0.0000 0.8598 0.8648 

car1 0.9433 0.9495 0.9098 0.9329 0.9634 

ecoli 0.0000 0.9491 0.0000 0.9546 0.9579 

glass 0.8040 0.8158 0.7934 0.8177 0.8834 

new-

thyroid 
0.9617 0.9794 0.9466 0.9742 0.9722 

page-

blocks 
0.8742 0.9680 0.8729 0.9669 0.9977 

yeast 0.6628 0.6676 0.6677 0.6744 0.9462 
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dataset, G-mean value of 3NN is equal to 0.00. These results 

show that 3NN without oversampling methods are not the good 

predictive model for classification on the minority class instances 

in case of both datasets.  

4.4.4 Effectiveness of C-MIEN on NB 

In this subsection, the performance of C-MIEN is compared to 

other methods based on NB classifier as shown in Table 13 and 

Table 14. The results in Table 13 show that C-MIEN performs 

better than other algorithms in terms of      F-measure in four out 

of seven datasets. There are three datasets that the F-measure of 

C-MIEN is lower than other methods including balance-scale, 

car, and ecoli. Consider on Table 14, we found that G-mean 

values of C-MIEN are superior to other methods in four out of 

five datasets as well. We suspected that these outcomes occur 

because the types of attribute in these datasets are categorical 

attributes. In addition, C-MIEN cannot work well in these 

datasets due to attribute dependency when NB is used as a base 

classifier. However, C-MIEN gets the mean of   F-measure and 

G-mean values of 0.78, while the mean of its values of NB, SNB, 

ENB, and ESNB are 0.73, 0.69, 0.73, and 0.70 respectively. 

Consider on yeast dataset, which is a highly imbalance ratio and 

a largest number of classes. Adjustment the NB classifier with 

basic oversampling and ensemble methods cannot improve the 

performance of NB classifier. On the other hand, these methods 

also reduce the efficiency of NB classifier on yeast dataset.  

4.4.5 Discussions on overall results 

In this section, we present the overall results of C-MIEN that 

can improve the performance of classifier in multiclass 

imbalanced dataset.  The experimental results show that            

C-MIEN achieves the best performances in all datasets in terms 

of F-measure when C4.5 and 3NN are used as base classifiers. 

However, C-MIEN with NB classifier obtains the lowest mean 

value in both measures because most datasets have attribute 

dependency. Therefore, using NB as a classifier will not perform 

well. In addition, G-mean results show that the prediction 

performance of C-MIEN is better than state-of-the-art methods 

in the minority class. Moreover, we compare the performance of 

C-MIEN with other methods in term of imbalance ratio. We first 

select the yeast and balance-scale datasets which have very 

different imbalance ratios and number of classes.  Yeast dataset 

has the maximum amount of classes (10 classes) and has high 

imbalance ratio (92.60).  On balance-scale dataset, it has the 

lowest number of classes (3 classes) and has low imbalance ratio 

(5.88) as well.  We finally compare the performance in terms of 

F-measure and G-mean when C4.5 is used as classifier, and the 

results are shown in Fig 2.   In case that the imbalance ratio is 

low, the performance results of C-MIEN on the balance scale 

dataset is similar to other methods. However, our values are 

highest in the baseline C4.5 method.  On yeast dataset, the 

imbalance ratio is high as 92.60. It is clear that, the performance 

of C-MIEN is more sharply than other methods.  The resulting 

classifications on other classifiers (1NN, 3NN, and NB) are not 

different as well. The results show that C-MIEN outperforms the 

current multiclass imbalanced data problem solving methods 

especially in case high multiclass and high imbalance ratio 

datasets.  In addition, we also make the following observation on 

the data studied. 

Table 13   F-measure comparison among four methods and    

C-MIEN on Naïve bayes classifier (NB).   

Datasets NB SNB ENB ESNB C-MIEN 

balance-

scale 
0.8674 0.7924 0.8591 0.7713 0.8485 

car1 0.8422 0.8872 0.8456 0.8868 0.7305 

ecoli 0.9524 0.9488 0.9534 0.9492 0.9390 

glass 0.5524 0.3419 0.5496 0.3907 0.6439 

new-

thyroid 
0.9676 0.9524 0.9728 0.9538 0.9765 

page-

blocks 
0.9152 0.7368 0.9100 0.7381 0.9290 

yeast 0.6147 0.5417 0.6137 0.5583 0.9029 

 

Table 11   F-measure comparison among four methods and       

C-MIEN on K-nearest neighbor classifier (3NN).   

Datasets 3NN S3NN E3NN ES3NN C-MIEN 

balance-

scale 
0.8420 0.8640 0.8280 0.8570 0.8685 

car1 0.9450 0.8240 0.8497 0.9192 0.9745 

ecoli 0.8450 0.9300 0.8400 0.9410 0.9430 

glass 0.7247 0.7268 0.7162 0.7215 0.8193 

new-

thyroid 
0.9340 0.9733 0.9340 0.9733 0.9785 

page-

blocks 
0.9794 0.9540 0.9791 0.9530 0.9948 

yeast 0.5222 0.5263 0.5332 0.5188 0.9041 

 
Table 12   G-mean comparison among four methods and           

C-MIEN on K-nearest neighbor classifier (3NN).   

Datasets 3NN S3NN E3NN ES3NN C-MIEN 

balance-

scale 
0.0000 0.8644 0.0760 0.8572 0.8573 

car1 0.7066 0.7693 0.7777 0.6666 0.9656 

ecoli 0.0000 0.9263 0.0000 0.9104 0.9458 

glass 0.8022 0.8375 0.7966 0.8242 0.8692 

new-

thyroid 
0.8856 0.9731 0.8780 0.9731 0.9752 

page-

blocks 
0.8487 0.9648 0.8511 0.9632 0.9969 

yeast 0.7265 0.7311 0.7003 0.6851 0.9455 

 

Table 14   G-mean comparison among four methods and        

C-MIEN on Naïve bayes classifier (NB).   

Datasets NB SNB ENB ESNB C-MIEN 

balance-

scale 
0.9462 0.8932 0.9375 0.8876 0.8119 

car1 0.8028 0.8625 0.7949 0.8621 0.7011 

ecoli 0.9590 0.9749 0.9597 0.9750 0.9695 

glass 0.6458 0.5330 0.6454 0.5828 0.7561 

new-

thyroid 
0.9528 0.9664 0.9559 0.9674 0.9766 

page-

blocks 
0.8287 0.8403 0.8315 0.8413 0.9162 

yeast 0.7522 0.6539 0.7502 0.6735 0.9417 

 



The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012 

- 9 - 

 

a) F-measure 

 

b) G-mean 

Fig 2.  Comparison of F-measure and G-mean of C4.5, SC4.5,  

EC4.5, ESC4.5 and proposed method for yeast and  balance-

scale datasets based on C4.5 classifier.   
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 Using SMOTE to oversampling the minority class 

instances is better than a baseline without oversampling on 

the most of the datasets. 

 Between the ensemble and SMOTE, SMOTE performs 

better in multiclass imbalanced dataset. 

 C-MIEN outperforms SMOTE and SMOTE with ensemble 

methods in the most of datasets and the most of base 

classifiers especially when the dataset has high imbalance 

ratio and large the number of classes. 

 The best base classifiers for C-MIEN are 3NN and C4.5, 

whereas C-MIEN with NB classifiers provide the lowest 

mean of both values. 

5. Conclusion 

In this research, we proposed a new resampling approach to 

learn from multiclass imbalanced dataset based on clustering and 

hybrid sampling approaches. In our approach, K-means is 

employed to separate all the instances into two clusters in order 

to reduce complicated sampling in multiclass dataset. After that, 

hybrid sampling approaches is used to reduce the degree of 

imbalanced distribution in sub training set. Finally, we proposed 

to use ensembles of several well-known classifiers; Decision tree, 

K-nearest neighbor, and Naïve bayes; to enhance the prediction 

performance. The findings from several UCI multiclass 

imbalanced datasets indicate that C-MIEN is very promising.  

From the experimental result, we found that C-MIEN obtained 

a big improvement of classification performance when the 

dataset has high imbalance ratio and large the number of classes. 

In addition, the results reveal that choosing the best base 

classifiers is an important issue to increase the performance of  

C-MIEN algorithm. We found that the best base classifiers for 

C-MIEN in this study are 3NN and C4.5.  3NN provides the 

highest mean of F-measure score, whereas C4.5 provides the 

highest mean of G-mean value. Therefore, C-MIEN with C4.5 

and 3NN classifiers make an impressive improvement in 

prediction performance, not only for the minority class, but also 

for the majority class. On the other hand, C-MIEN with NB 

classifiers provide the lowest mean of both values. 

In particular, we found that C-MIEN is a practical algorithm 

for multiclass imbalanced datasets in three ways: (1) the 

performance of base classifier can be improved by C-MIEN in 

both minority and majority classes. (2) C-MIEN reduce the 

complexity of decision regions in multiclass takes using 

clustering and relabeling approaches (3) C-MIEN inherits the 

strength of two strategies; ensemble and SMOTE. Therefore, it 

reduces variance/bias and alleviates the overfitting problems. In 

future work, we will apply C-MIEN to other datasets. 
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