
The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 1 -

A Personalized Thai Consonant-only Input Method for Smartphones

Panithan Ballungpattama
*1

Piyoros Tungthamthiti
*1

 Cholwich Nattee
*1

*1

School of Information and Communication Technology

Sirindhorn International Institute of Technology

Bangkok, Thailand

panithan.ballungpattama@student.siit.tu.ac.th, xylz_jo@hotmail.com, cholwich@siit.tu.ac.th

Due to the portable size of mobile phones, text input method using a virtual keyboard on smartphones is inconvenient task

for all users, especially for Asian language (e.g. Chinese, Japanese, Thai etc.), which has a lot of characters and symbols.

This paper presents a development of a text input method based on Thai language and introduces a Thai consonant-only

keyboard, and an improvement in candidate generation algorithm for handling Thai text input on smartphones with touch

screen. The proposed layout shows only Thai consonants instead of the combination of Thai consonants and vowels. User

inputs only a sequence of consonants that is a part of the intended word. Then, we propose an approach based on the

concept of Personalized Candidate Selection technique to choose a set of most appropriate words before making any

suggestion to the user. In comparison between the proposed technique and the existing Thai keyboards in term of the

number of keystrokes required for inputting words, the experimental results show that the proposed approach helps save

49.71%.

1. Introduction

Smartphones have become one of the most important

devices for communication in the modern world. It is

because there is a very high demand from busy people

who want to be able to use computers anywhere and

anytime. A smartphone is a mobile phone that includes

advanced functionality beyond making phone calls and

sending text messages. A smartphone is a personal digital

assistant or a computer that will allow you to have the

ability to send and receive e-mails and edit documents,

display photos, play videos and surf the web. The device

has a compact size and very light weight, which makes it

convenient to carry around. These characteristics seem to

satisfy the need of busy people very well. However, there

are some problems arising from its portability. It is

obvious that a full-sized keyboard cannot be used due to

its large size. So, it is necessary that a new input method

(e.g. characters) needs to be developed to increase the

performance of the device according to speed and

accuracy.

Text input methods offer a great potential in typing on

mobile and handheld devices, which have limited and

fixed size of screen area. Generally, text input method will

allow users to input some characters, then suggested

candidate words will be generated according to the

algorithm of each input method. For example in

consonant-only Thai keyboard, when ‘ก’ is given as an

input, these words “กะ”, “เกาะ” and “กา” are generated as

word candidates.

Nowadays, QWERTY (shown in Figure 1: Standard

keyboard layout for English language) is one of the

most popular keyboard layouts for smartphones. The

reason is because the layout is the same as a physical

keyboard and most of the smartphone users would be

familiar with it.

(a) Normal (b) Shifted

Figure 1: Standard keyboard layout for English language

However, when it comes to Thai language, which has a

lot of alphabets, the keyboard consists of 2 layers (shown

in Figure 2). They are normal and shifted layers. Each

layer has different number of keys and sizes. In

comparison to the QWERTY keyboard, Thai language

keyboard has more characters, vowels and tone marks.

This makes the button size become smaller and causes a

decrease in accuracy and typing speed. So, the layout

needs to be further developed to improve an efficiency of

the input method.

(a) Normal (b) Shifted

Figure 2: Standard keyboard layout for English language

1K2-IOS-1b-2

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 2 -

This paper will introduce a new Thai keyboard layout,

which will be composed with only Thai consonants and

also explain how to improve an efficiency of the

consonant-only Thai keyboard layout by increasing the

accuracy and speed of typing [Masui 1999]. The layout

will be developed according to Kedmanee layout, which is

the standard keyboard layout for Thai language. We also

propose a way for the soft keyboard to recommend the

probable words according to the user input. This will

allow the keyboard to have a larger key size and less

keystroke is required. Candidate generation using set and

personalized candidate selection techniques will be used to

improve the accuracy of the algorithm for candidate

suggestions.

2. Consonant-only Thai Input Method

Ballungpattama et al. [Ballungpattama 2011] has

proposed a Consonant-only Thai Input Method. Due to the

large number of Thai characters, vowels and tone marks,

consonant-only Thai keyboard will be implemented to

reduce the number of buttons and increase the size in order

to increase efficiency of usage. Since vowels and tone

marks are removed, the smallest width of keys on out

proposed keyboard is roughly 12.5 percent, which is about

6 millimeters on our device, which is not the optimal

width of the button size at 9.6 millimeters as Parhi et al.

[Parhi 2006] suggested. The consonant-only keyboard will

be created based on Kedmanee layout. So, users can get

familiar with the keyboard easily. Figure 3 shows our

proposed layout for normal and shifted keyboard. Without

vowels and tone marks on our proposed keyboard, we

propose a technique to predict a list of high possibility

words. From a sequence of consonants input by the user,

our proposed technique retrieves a list of words composed

of all consonants in the input sequence from the pre-

constructed dictionary, and ranks the candidate words

based on their occurrence frequency. Based on this idea,

users do not need to spell the full word.

(a) Normal (b) Shifted

Figure 3: Keyboard layouts for consonant-only Thai

keyboard

The consonant-only Thai keyboard also provides a word

suggestion functionality, which generates a list of

candidate words even if the user input a few characters.

This process designed the dictionary based on the inverted

index from the Boolean retrieval technique [Manning

2008]. An inverted index consists of two part e.g. a

dictionary (a list of words) and postings (a list of

keywords). This is the structure behind the preparation of

a dictionary and the candidate generation algorithm. Data

structures used are a word list, a dictionary, and postings;

all of this is illustrated in Figure 4.

Figure 4: Structures used in Consonant-only Thai

Keyboard

The word list stores the words’ ID and the words

themselves. One ID will be associated to one word. When

the candidate list is generated, the program uses the word

list to fetch words from IDs and send words to the

CandidateView. This word list is generated from the

dictionary generation algorithm.

A dictionary is the structure, which stores words into

postings according to their keys. There are two types of

keys: single- consonant keys from Thai characters ‘ก’ (Ko

Kai) to ‘ฮ’ (Ho Nokhuk), including a rarely used ‘ฤ’ (Ru);

and pairs (double-consonant keys) from “กก” to “ฮฮ” for a

total of 2,025 keys.

Postings store words ID and frequencies. Normally,

each postings is associated with one words’ ID, however,

there are many words in Thai which contains only one

consonant but have different vowels and tone marks, for

example, some of the words which have only a consonant

‘ก’ are “กะ” (to estimate), “เกาะ” (island), and “กา”

(crow); whereas an English word which has only one

alphabet is an alphabet itself. Therefore, postings must be

implemented in a way that can contain one word and a

pointer to the next word. This principle is also true for

keys with two characters. Double-consonant keys, or pairs,

consist of one leading and following consonants. The first

consonant in a word is considered a leading consonant.

Other words will be treated as following consonants, for

example, a pair กก contains the words “กก” (a kind of tree),

“กากบาท” (cross), and “เกะกะ” (cluttered).

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 3 -

3. Algorithms

Our proposed method used these two important

algorithms. They are the dictionary generation and the

word suggestion algorithm.

3.1 Dictionary Generation

This algorithm takes a word, removes vowels and tone

marks, indicates keys from consonants, and put a word in

keys. Figure 5 shows a dictionary generation method for a

word กรุงเทพ (Bangkok). This process is considered a

preprocessing because it will occur only when installing

the application into smartphones and when users use this

application after turning on smartphones.

Figure 5: Three steps of dictionary generation

According to the dictionary generation method, possible

words will be generated as candidates. Inverted index will

be created and possible words and their frequencies will be

stored within the index. Figure 6 is how the complete

inverted index looks like.

Figure 6: An complete inverted index

3.2 Candidate Words Generation

The candidate words generation, or word suggestion,

choose the appropriate set of words according to user input

and choose them as word candidates. This algorithm

works differently for different input length. When user

inputs one or two consonants, obviously, a key for

fetching candidates will be an input itself. If the input has

at least three consonants, the keys will be indicated using a

combination of leading and following consonants as in

Figure 5c. Then, the algorithm compares lists and removes

words that are not in every list while keeping words in all

lists. Finally, candidate words are put into a list before

sending to the candidate view. Figure 6 shows candidate

words when a user giving different inputs.

Figure 6: An example of output shown with given inputs

4. Candidate Word Generation Algorithm
Improvements

4.1 Initial Implementation

The initial implementation of the consonant-only

keyboard will be done according to the candidate

generation algorithm in the previous section. For an input

with one or two characters, a candidate will be obtained

from the respective pair. For an input with three or more

characters, the candidate list of pairs will be stored in a

two-dimensional array. Each row represents a word list of

each pair and each column in a row represents each word

in a pair. Words in lists are arranged by their frequency in

the descending order. Words that appear in all rows will be

chosen as candidates.

4.2 Implementation Improvement

A new candidate generation algorithm is proposed. This

new method keeps track of a candidate words list from a

previous input; with that, the candidate list for a new input

can be created by just a few altering from the previous list

without having to generate the candidate list all over again.

Then, a candidate list from each step will be stored in (or

obtained from) a stack. The new method will do different

operations according to how the input length change, but

the most prominent operation used is an intersection for

sets and peeking for a stack. The intersection of two sets is

the set containing all of the elements contained in either

set [Oracle inc. 1995]. Peeking a stack gets an object on

top of the stack without removing it from the stack. Let n

be a length of current input and x be any number less than

n, the pseudocode is shown in Figure 7.

(a) Vowel Removal (b) Leading and following

consonants indication

(c) Determine pairs to put words

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 4 -

Figure 7: Candidate generation using a set and a stack

4.3 Improving Usability

Consonant-only Thai Keyboard provides a list of

candidate to users when users type in consonants. In an old

implementation, words in a candidate list are picked from

key(s) and then arranged by frequencies; the frequencies

are taken from BEST2010 word list into a form of text file

before presenting words to the user. Still, arranging words

based on only the frequency seems inefficient. If a user

would like to choose one word with has a very low

frequency, but a user often use it; that word will be very

far away, almost at the end of a candidate list. Users have

to scrolling to find that word, which are very time

consuming when done many times. To solve this problem,

the keyboard should be smart enough to remember which

word a user has used frequently; the keyboard should do

something to increase the priority of that word so that it

will appear in a better location, while still retaining the

frequency value.

In addition to the rank increase for frequently used

words, the word similarity should be taken into account

too. For example, a user would like to choose a word ปืน

(gun), the user type two consonants ปน (Po Pla and No

Nu), but our keyboards recommends long words like

เปลี่ยนแปลง (to change), ประธานาธิบด ี (president), ประ
ชาสัมพันธุ ์(psnrit ler cilbu) ect. , leaving a word ปน (Gun),

falling far behind because it has less frequency than these

long words. Our keyboard should be able to improve the

rank of words which are more similar to input too.

4.4 Personalized Candidate Selection Technique

Instead of calculating words order using only a

frequency, the order will be calculated using a probability

points. The formula to calculate the probability point is:

udf pppTotalPoint  

Pf , or frequency points, are points given to words’

frequency. Now, a frequency is just one part of the point

calculation.

Pd , or distance points, are points given to edit distance

between user’s input and words in list. An edit distance,

also known as Levenshtein Distance [Levenshtein 1966],

is a minimum number of edit operations to transform one

string to another string [3]. The operations are inserting a

character into a string, deleting a character from a string,

and replacing a character with another character. A

distance point is inverse-proportional to a Levenshtein

Distance because more Levenshtein Distance means more

difference between an input and words [Gilleland 2009].

For example, the Levenshtein distance between an input

“กรง” (cage) and a word “กรุงเทพ” (Bangkok) is 4. Table 1

shows the transformation from “กรง” to “กรุงเทพ”

START CandidateGenerationSetStack
 IF(oldInputLength == 0 and newInputLength == 1)
 //case 1: length change from 0 to 1
 do nothing;

 ELSE IF(oldInputLength == 1 and newInputLength == 2)
 //case 2: length change from 1 to 2
 create a set from a key;
 push a set into a stack;

 ELSE IF(oldInputLength == 2 and newInputLength == 1)
 //case 3: length change from 2 to 1
 pop a set from the stack;

 ELSE IF(oldInputLength == x and newInputLength == x+1)
 //case 4: length change from x to x-1, x = 2, 3, ...,

n-1
 create a new set from current key;
 intersects the previous set with the current set;
 push the newly intersected set into a stack;

 ELSE IF(oldInputLength == 3 and newInputLength == 2)
 //case 5: length change from 3 to 2
 pop a set from the stack;
 peek a top set from the stack;

 ELSE IF(oldInputLength == x and newInputLength == x-1)
 //case 6: length change from n-1, n-2, ..., 4
 pop a set from the stack;
 peek a top set from the stack;

 ELSE IF(oldInputLength == 0 or 1 and newInputLength ==

0)
 //case 7: delete all input or backspace even if there

are no input
 clear set;
 clear stack;

 END IF
END CandidateGenerationSetStack

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 5 -

Table 1: Levenshtein distance computation for กรง and

กรุงเทพ

Step Operation Before

Change

After

Change

1 Insert ุ (Sara U) กรง กรุง
2 Insert เ- (Sara E) กรุง กรุงเ
3 Insert ท

(THO THAHAN)

กรุงเ กรุงเท

4 Insert พ
(PHO PHAN)

กรุงเท กรุงเทพ

Pu , or user points, are points given to words that were

chosen by the user. Every time a user chooses a word, its

user point increases by one. Since this value affects points

calculation, user points and chosen words are kept in

another file separated from dictionary and index files; this

file, along with other files, are loaded when the onCreate

method is called. In addition to that, user point files will

change its content every time a user choose a word, so that

a rank improvements can be seen immediately the next

time a user try to select the same word.

a , b , and g are weights given to frequency points,

distance points, and user points, respectively.

5. Experiments and Results

5.1 Finding a suitable weight

According to the Personalized Candidate Selection

Technique, we would like to know which weight

distribution would give out the best result. An experiment

to determine a suitable weight for each point is conducted.

This experiment is conducted on the test set which consists

of 20 words randomly chosen from the corpus with

varying lengths and frequencies. Five users need to type

all these words correctly before proceeding to next word.

The value of α, β, and γ that will be used in the test are:

 Give more weight to α and β (40:40:20)

 Give more weight to α and γ (40:20:40)

 Give more weight to β and γ (20:40:40)

 All has the same weight (33:33:33)

The sum of the ratio must be one hundred, with an

exception of the fourth case where we would like to

distribute all weight equally, which is ninety-nine. Also,

note that one weight should not be one hundred percent

and left the other two weight become zero; that is because

the point from other value will never be used, thus making

the candidate generation algorithm being affected by only

one value. Figure 8 shows the result for different weights.

The graph shows the average word index that users touch

and the average input length before users touch the word

shown on candidate view. From this graph, two ratios

stand out. The ratio 40:20:40 let users choose the word

easier because of the average index is the lowest with an

exchange of a bit more keystrokes. The ratio 40:40:20 let

users input the least amount of input length before

showing a candidate list to select a word. Although the

actual values are not very different between these four, we

will consider more on the index because one more index

behind may require users’ effort to scroll the candidate list

a bit further, taking a bit of typing time. Also, scrolling the

list does not count toward the number of keystroke used.

Therefore, the suitable weight for a test should be α equals

to 40 percent, β equals to 20 percent, and γ equals to 40

percent.

Figure 8: A graph, which shows index and input length

for different weight distribution

5.2 Experiments

After we obtain the suitable weight for this experiment,

we will start evaluating out proposed method. Another

application has been created solely for a purpose of testing

Consonant-only Thai Keyboard. The test program lets

testers type fifty words that are shown on the screen.

Testers have to type words correctly in order to advance to

next words. The test set contains fifty words, which are

directly taken from Table 2. Each word must be correctly

typed before advancing to the next word. After testers type

fifty words (one by one) correctly, the program will

navigate a user to the summary page. The screen-shots

from the test program are shown in Figure 9.

Table 2: Words length, frequencies, and number of

words for each type

High frequency,

Short words,

6 words

High frequency,

Medium words,

5 words

High frequency,

Long words,

6 words

Medium frequency,

Short words,

5 words

Medium frequency,

Medium words,

6 words

Medium frequency,

Long words,

5 words

Low frequency,

Short words,

6 words

Low frequency,

Medium words,

5 words

Low frequency,

Long words,

6 words

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 6 -

Figure 9: A screenshot of the test program

Three statistics will be used as the key indicators to

measure the performance of Consonant-only Thai

Keyboard:

 Keystroke Saving Rate (KSR): The percentage of the

keystroke that can be saved.

 Time per Word (TPW): The average number of time

in second for typing one word.

 Time per Keystroke (TPK): The average number of

time in second between one keystroke and another

keystroke.

Consonant-only Thai Keyboard is test against Droidsans

Thai keyboard as an on-screen keyboard with Kedmanee

layout. The results are shown in Table 3.

By using Droidsans, testers are required to type all the

consonants, vowel, and tone marks, which is 100 percent

of the keystroke typed; hence 0 percent of keystroke saved.

The number of keystroke typed on Droidsans will be

compared with the number of keystroke typed using

Consonant-only Thai keyboard to determine the efficiency

of Consonanr-only Thai keyboard. From Table 3,

Consonant-only Thai Keyboard can save the keystroke

with a satisfactory rate of 49.71 percent when compared to

Droidsans. The keystroke reduction rate of Consonant-

only Thai keyboard is obviously less than its earlier

version, which achieve up to 71.29 percent. However, the

earlier version performs very slowly. Therefore, we have

to improvise the algorithm and data structure to makes it

becomes faster, but at the same time, affecting the

keystroke saving rate. Another important reason is the

difference of the test method. In the prototype, the optimal

text input does all possible tapping for the best result,

which could take plenty of time. In Consonant-only Thai

Keyboard, testers are free to type in any order as they like,

as long as the words are correct. Testers would not try

typing in every possible combination because that will

consume too much time. Also, the time per words shows

that using Consonant-only Thai Keyboard makes typing

become faster than Droidsans with the difference around 4

seconds. Surprisingly, the time per keystroke is slower

than Droidsans. The cause of this might be testers’

familiarity with Kedmanee keyboard makes them spell the

words, even with vowels and tone marks, become faster

than Consonant-only Thai Keyboard.

Table 3: An experiment results for Droidsans and

Consonant-only keyboard

Keyboard KSR (%) TPW (s) TPK (s)

Droidsans 0 10.84 1.09

Consonant-

only Thai

Keyboard

49.71 7.01 1.32

From the experiment, we also classified the testers into

two groups: the beginners and the experienced testers.

There are 4 testers in the beginners group and 3 testers in

the experienced tester group. Both groups have been given

a short introduction to Consonant-only Thai Keyboard and

a demonstration on how to use it. The beginners are

allowed to use our proposed keyboard for once or twice

whereas the experienced users are allowed to try our

proposed keyboard for as long as they want. The empirical

results are shown in Table 4.

Table 4: An experiment results for different types of

users

Tester KSR (%) TPW (s) TPK (s)

Behinner 45.96 8.40 1.52

Experienced 53.45 5.63 1.12

From Table 4, we could see that the experienced testers

can save the keystroke up to 53.45 percent, which more

keystroke is saved than beginners do. This is because the

experienced users know which consonant should be input

next in order to make the candidate and a target word

appear. However, the number of keystroke saved by the

experienced testers is less than we anticipated. We

expected them to save up to 65 percent. Still, the time

saved by word and keystrokes are within our expectations.

The experienced users perform slightly faster than

beginners. This is because they are more familiar to

Consonant-only Thai Keyboard than beginners; they are

allowed to try our proposed keyboard as long as they like.

The next thing we would like to discuss is the keystroke

saving rate for words with different length: short, medium,

and long. The rate will be shown in percentage when

compared with Droidsans Thai keyboard. The result is

shown in Table 5.

Table 5: Keystroke saving rate for different word lengths for

Consonant-only Thai Keyboard

Word Length Short Medium Long

KSR (%) 33.19 49.89 55.89

From Table 5, we could see that the longer the words

are, the more percentage of the keystroke saved. This is

because the extra keystrokes from pressing shift button

and selecting a word could make the number of keystroke

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 7 -

almost equal to the number of consonants in words. Thus,

less keystroke reduction rate is achieved. There are two

reasons to support the reduction of keystrokes. Firstly, our

proposed keyboard does not require users to input vowels

and tone marks; users are allowed to type only consonants.

Even if users type all consonants in a word, the keystroke

will be less than a full word in case of words with vowels;

or equal to a full word if that word contains only the

reduced or changed form of the vowels or contains อ (O

Ang), which is considered as both a consonant and a

vowel. Secondly, words chosen for testing have different

frequency and length. Some of chosen words are not

usually appear in general usage such as specific nouns,

Thai royal words, or words borrowed from foreign

languages; these words often contain uncommon

consonants. For a same word, after inputting the leading

consonant, inputting rarely used consonants first yields a

better chance for a target word to appear than typing

frequently used consonants. All of the reasons specified

earlier contributed to the keystroke saving rate using

Consonant-only Thai Keyboard.

6. Conclusion

We have introduced several ways to improve a

prototype of Consonant-only Thai Keyboard to minimize

the execution time and maximize the usability. Firstly, a

single text file, which makes up the dictionary and the

corpus are split into two binary files with proper

formatting for faster loading. Secondly, the

implementation of the candidate generation algorithm is

changed from 2D array to set and stack to be able to keep

track of the candidate list from previous input and for

better performance. Thirdly, a formula to calculate the

order of words now uses the probability point, which is the

sum of frequency points, distance points, and user points;

with appropriate weight distributed. Finally, a test program

is created for users to type specified words as a mean for

evaluation. The results show the overall performance data

such as time taken, the word per minute, the number of

second per word and keystroke; and the keystroke saving

rate for each word type, with a decent keystroke saving

rate of 49.71 percent when compared to normal Thai

keyboard.

References

[Masui 1999] T. Masui, “POBox: An Efficient Text Input
Method for Handheld and Ubiquitous” in Proceedings
of the 1st international symposium on Handheld and
Ubiquitous Computing, 1999.

[Parhi 2006] Pekka, “Target size study for one-handed
thumb use on small touchscreen device,” in
Proceedings of the 8th conference on Human
computer interaction with mobile devices and
services, 2006.

[Manning 2008] Christopher, “Introduction to Information
Retrieval”, Cambridge University Press, 2008

[Ballungpattama 2011] Panithan, “A Consonant-only Thai
Input Method”, In proceedings of the International
Conference on Knowl- edge, Information and
Creativity Support Systems(KICSS2011), 2011.

[Oracle inc. 1995] Oracle inc., “The Set Interface”,
http://docs.oracle.com/javase/tutorial/collections/inte
rfaces/set.html

[Levenshtein 1966] V. Levenshtein, “Binary Codes
Capable of Correcting Deletions, Insertions and
Reversals”, Soviet Physics Doklady, vol. 10, 1966.

[Gilleland 2009] M. Gilleland, “Levenshtein Distance, in
Three Flavors”, 2009, http://www.merriampark.
com/ld.htm.

