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Using Soft Case-Based Reasoning in Model Order Selection

for Image Segmentation Ensemble
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The desired number of clusters in clustering problem is generally not known in advance. In this work, we
propose to use case-based reasoning as a novel problem solving technique for automatic model order selection with
application to image segmentation ensemble. Soft computing technique is integrated in our case-based reasoning
to handle ambiguity and uncertainty in image data. Given the fact that we do not know the optimal number of
regions for a particular image in advance, the comparative performance of our approach is remarkable and reveals
its potential in dealing with the difficult model order selection without ground truth. Moreover, our approach can
be easily integrated into a general class of image segmentation system that prevents a segmentation algorithm from
exhaustively searching for optimal segmentations. Extensive experiments on 300 images have been conducted and
our preliminary results show the effectiveness of our approach.

1. Introduction

For most clustering problems there is little prior infor-

mation (e.g., statistical models) available about the data.

Thus, the desired number of clusters is not known in ad-

vance and is often specified by a human user. Recently,

the idea of using multiple segmentations has emerged in

the area of model order selection problem. Cho and Meer

[Cho 97] proposed a new approach of image segmentation

based on a co-occurrence probability field derived from the

consensus of a set of different segmentation outputs on a

single input image. Starting from an over-segmented re-

sult, the algorithm computed a final segmentation result by

iteratively merging together the pixel pairs with high co-

occurrence probability. Rabinovich et al. [Rabinovich 06]

developed a model order selection schema based on clus-

ter stability and used it to find a shortlist of most stable

segmentations from a large number of possible segmenta-

tions. Wattuya et al. [Wattuya 08] proposed also an opti-

mization approach for selecting one optimal segmentation

from a given set of segmentation results. In their frame-

work, they produced several initial segmentations of the

same input image by varying values of segmentation algo-

rithm parameters. Then, a segmentation combination al-

gorithm is applied to combine these initial segmentations

to produce a final combination segmentation result. Since

the optimal number of regions is not known, they forced

the segmentation combination algorithm to produce a se-

ries of combination results with different number of regions,
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k, in a meaningful range [kmin, kmax]. Normally, the range

[kmin, kmax] is not small, so that it can adequately cover all

possible meaningful segmentations. Then, optimality cri-

terion based on generalized median concept is applied to

select the optimal result out of the set of combination so-

lutions. The extension of this work [Wattuya 10] proposed

to used objecttive function based on minimum description

length instead of generalized median concept. The results

showed slightly improvement over the previous work.

In this work, we propose to use a case-based reasoning as

a problem solving technique for automatic model order se-

lection. We begin with the observation that the complexity

of one image should reflect something about its own number

of regions. Images with high visual complexity should nat-

urally contain more salient regions (objects) than images

with low visual complexity. In other words, images with

similar degree of visual complexity should contain similar

number of regions. A case-based reasoning is built upon this

assumption to infer the potential, small range of a number

of regions.

The proposed case-based reasoning can be integrated into

the existing image segmentation system, in order to reduce

a search space/a problem size which needs to be processed.

For example, we can integrate our case-based reasoning to

[Rabinovich 06] by presenting a small set of potential seg-

mentations to a model order selection module to find a

shortlist of most stable segmentations, instead of starting

from a large set of possible segmentations. By doing this

way, the model order selection computation may converge

to an optimality criterion faster and yield better optimal re-

sults. Our case-based reasoning approach is also possible to

be integrated into the segmentation combination framework

proposed in [Wattuya 08], which would (i) significantly re-

duce the amount of work needed for producing a large set

of combination results with different k ∈ [kmin, kmax] to a

smaller set of potential segmentations, and (ii) significantly

reduce the amount of time needed to search for a final op-
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timal segmentation by restricting a large search space of a

meaningful range [kmin, kmax] to an smaller subspace of a

potential range reasoned by a case-based reasoner.

We verify the effectiveness of our case-based reasoning

in an application of image segmentation combination pro-

posed in [Wattuya 08]. The experiments show good results

on our approach. Moreover, they demonstrate a valuable

side benefit of our proposed case-based reasoning in alle-

viating the poor performance caused by the instability of

the objective function used in an optimal segmentation se-

lection method. Novel features of our case-based reasoning

include the ability to predict a very small range of valid

number of regions without the need of ground truth seg-

mentations and the ability to integrate into a general class

of image segmentation that free a segmentation algorithm

from exhaustively searching for potential segmentations.

In image processing and computer vision, case-based

reasoning techniques have been successfully used to im-

prove the performance in various applications, for exam-

ple, Perner [Perner 99] used case-based reasoning frame-

work for the high-level unit of an image interpretation sys-

tem. Frucci et al. [Frucci 08] used case-based reasoning

for handling parameter selection problem in image segmen-

tation algorithm. To our knowledge, our work is the first

attempt of using case-based reasoning to handle the prob-

lem of model order selection.

In the next section, we continue with an overview of our

proposed case-based reasoning. The full details of building

it are explained in Section 3. In Section 4, experimental

validation and discussion are reported, followed by some

discussions to conclude this paper.

2. Overview of the Proposed Soft Case-

Based Reasoning

Case-based reasoning in general involves solving new

problems by identifying and adapting solutions to similar

problems stored in a library of past experiences. In our spe-

cific problem domain, a case-based reasoning is built upon

the knowledge derived from original image and its segmen-

tation ensemble. It takes an image and its segmentation

ensemble as input, and gives a small potential range of k as

an output. Once the case-based reasoning unit is given an

input image and its corresponding segmentation ensemble,

the relevant image features are extracted from both inputs.

The case-based reasoner will select from a case base the

cases having most similar features to those of the current

input image. Then, the solutions of retrieved cases are ap-

propriately adapted to fit the new current problems before

fed into an image segmentation combination unit to further

process.

One of the important issues related to building case-based

reasoning is how to definitively describe the problem spec-

ification in order to ensure that a case will be retrieved in

the most appropriate context. This requires the cases to

contain the relevant features of the problem and its context

that influenced the outcome of the solution. Based on our

assumption between the degree of visual complexity and its

natural link to a number of regions in an image, we have to

look for features that can characterize and discriminate the

visual complexity between images well. However, it is diffi-

cult to precisely model the complexity of an image, particu-

larly, related to the number of regions. Case-based reason-

ing can simplify our problem since it does not require any

explicit model or rules. The knowledge acquisition tasks of

case-based reasoning consist primarily of collection of rel-

evant existing cases and their representation and storage.

However, once cases are retrieved from the case base, it

is possible that they are not identical to the current case,

possibly caused by using indescriptive or incomplete fea-

tures. A case-based reasoner can deal with this situation,

although these factors may cause a slight degradation in

performance (due to the increased disparity between the

current and retrieved cases). In this work, we attempt to

prevent performance degradation by integrating soft com-

puting into case-based reasoning. The experimental results

show that soft computing technique can manage this situ-

ation well.

The use of fuzzy logic in case-based reasoning systems

dates back to the early 1990s, when researchers started

to use attributes with fuzzy values and a fuzzy pattern

matcher for case retrieval. Soft case-based reasoning has

been well documented in [Pal 04]. In image processing and

computer vision, there are numerous works that use soft

computing to deal with uncertainty and vagueness of image

data, for example, a survey of soft computing approach to

image segmetation can be found in [Senthilkumaran 09].

3. Soft Case-Based Reasoning for

Model Order Selection

The important steps in the inference cycle of case-based

reasoning are to retrieve cases from the library which are

most relevant to the problem at hand and adapt the re-

trieved cases to the current input. In this section we in-

troduce how to design these essential components and pro-

cesses that make up a case-based reasoning for solving the

model order selection problem. Our attempt is to predict a

small range with reasonable number of regions that is large

enough to capture all salient objects in an image.

3.1 Case Representation

Cases in a case base are usually represented as two un-

structured sets of attribute-value pairs that represent the

problem and solution features. In this work, a case is rep-

resented by a flat feature-value vector comprised of problem

features describing image characteristics of visual complex-

ity, < f1, ..., fp >, and the solution that stores a potential,

small range of number of region, < rmin, rmax >.

Problem Features

The development of a case base requires objective mea-

sures of visual complexity of an image. The problem of

evaluating the complexity of an image is of a certain rele-

vance to both cognitive and computer science studies, al-

though in broader contexts the general problem of visual

complexity measurement is ill-defined [Cardaci 06]. In the
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context of our problem, we define image complexity as a

measure of image information that causes regions in the

image. Images possessing large amount of such information

should inherently lead to great perceived complexity (i.e. a

lot of objects or regions). Hence, images that share most

common such information should have a number of regions

in the same small range of k. In order to effectively capture

visual complexity of an image, we take into account both (i)

information from low-level features (i.e. texture) extracted

directly from image data, and (ii) valuable information (i.e.

average number of regions) derived from a segmentation

ensemble, which play an important role in our approach.

Texture Feature. Texture is one of the important char-

acteristics used in identifying objects or regions of inter-

est. Texture features contain information about the spatial

distribution of tonal variations within a band. The tex-

ture features we used in this work are based on the gray-

tone spatial-dependence matrices proposed by Haralick et

al. [Halkidi 73]. The gray-tone spatial-dependence matrices

can reveal certain properties about the spatial distribution

of the gray levels in the texture image. For example, if

most of the entries in the the gray-tone spatial-dependence

matrices are concentrated along the diagonal, the texture

is coarse with respect to the specified offset. Four statis-

tical measures, which are contrast, correlation, homogene-

ity, and entropy, extracted from the the gray-tone spatial-

dependence matrices are used. Contrast is a measure of the

amount of local variations present in an image. Correlation

is a measure of how correlated a pixel is to its neighbor

over the whole image. Contrast and correlation are zero for

a constant image. Homogeneity measures uniformity of the

gray value in an image. Entropy measures characterize the

complexity and nature of gray-level transitions which oc-

cur in the image. Images with more gray levels have lower

average homogeneity but higher average entropy.

Average Number of Regions. We propose to use a new high-

level feature involving an approximate natural number of

regions by employing knowledge from image segmentation

ensemble. A different number of regions among the differ-

ent initial segmentations are a good approximation about

a natural number of regions of a given image. We conjec-

ture about general characteristics of segmentation results

computed by an arbitrary segmentation algorithms that the

good quality segmentations of the same image are quite

alike (more or less), while the bad segmentations are arbi-

trarily bad in its own way. If we assume that about the

half of initial segmentations in an ensemble have accept-

able good quality, the average number of regions among

all initial segmentations is a good statistical approximation

one. Since segmentations with minimum/maximum num-

ber of regions in an ensemble would have high possibility to

be bad segmentations in an ensemble, directly use of mini-

mum/maximum values would cuase high possibility to fal-

sify the natural number of regions. However, in practice our

assumption may be wrong in some situations since we did

not control the quality of initial segmentations in an ensem-

ble. The majority population of a segmentation ensemble

could be relatively bad for difficult-to-segment images.

All five image features defined in this section will be used

for indexing and retrieving of a set of cases close to the cur-

rent problem, based on a proper similarity measure. How-

ever, the task of defining relevant image features and how to

weigh their importance are difficult and need further study.

One can use more sophisticated image analysis techniques

to explore more relevant features with higher discrimina-

tive ability, for example, the work [Cardaci 09] proposed to

evaluate the image complexity using fuzzy approach.

Case Solution

As we mentioned earlier, the consensus of different initial

segmentations provides valuable information for approxi-

mation of natural number of regions in a given image. Even

though direct use of minimum/maximum number of regions

of an ensemble could misinterpret a natural number of re-

gions, these two extreme values are the best available ap-

proximation of a lower bound and an upper bound of a

reasonable range of possible k. In other words, a natural

number of regions should fall within this range. Hence, we

decide to use the range [rmin, rmax] as a solution of a case.

3.2 Case Generation and Retrieval

Case selection and retrieval is usually regarded as the

most important step within the case-based reasoning cycle

since the remaining operations of adaptation and evaluation

will succeed only if the selected cases are of relevant ones.

In general, in the process of case matching and retrieval,

the searching space is the entire case base. Too many cases

stored in a case base will make the task costly and ineffi-

cient. Thus, many classification and clustering algorithms

have been proposed to address such problem. After the

cases are partitioned into several subclusters, a set of rep-

resentative cases is selected beforehand based on clustering

result. Then, the task of case matching and retrieval boils

down to matching the new case with one of the several sub-

clusters, and finally, the desired number of similar cases can

be obtained.

In this work, the above schema is also applied but for

different purpose. Our use of clustering algorithm mainly

aims for generalization of the case base. The essential rea-

son for the need of case base generalization is that since

it is hard to precisely define all relevant features and their

importance in our problem domain, case descriptions may

contain misprecision or incomplete data. Thus, by using

an individual case to reason the new current problem could

indeed yield an unsatisfactory result. We propose to handle

this problem by applying soft computing technique.

Case Generalization using Fuzzy c-Means Clustering

We achieve a case base generalization by using fuzzy c-

means (FCM) algorithm. FCM has proven to be very ef-

fective for solving many cluster analysis problems and is

widely used for case clustering. In our work, distribution

of cases in a case base has no clear cut boundaries between

clusters. They partially overlap among them in the feature

space. We use FCM to handle uncertainties arising from

such overlapping clusters, since it allows one case to be-

long to multiple clusters with similar or different degree of

belongness.
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To develop FCM algorithms, we hypothesize that cases

are represented in an n-dimensional feature space where the

axes represent the variables (features) and cases become

points (vectors) in the space. Let X = x1, ...,xn be the set

of given cases and let c be the number of clusters (1 < c <

n). The basic idea of determining the fuzzy clusters is by

minimizing the following objective function [Bezdek 81]:

J(U,C) =

c
∑

i=1

n
∑

j=1

um
ijd

2
ij (1)

where C = {c1, ..., cc} is the set of cluster centers (or clus-

ter prototypes), dij is the distance between xj and cluster

centers ci , the parameter m, m > 1, is called weighting ex-

ponent used to determine the fuzziness of the classification,

and U is a c × n matrix, where uij is the ith membership

value of the jth input sample xj . The membership values

satisy the following conditions:

0 ≤ uij ≤ 1, i = 1, ..., c; j = 1, ..., n

c
∑

i=1

uij = 1, j = 1, ..., n

0 <

c
∑

i=1

uij < n, i = 1, ..., c

Euclidean distances between each input case and its corre-

sponding cluster center are weighted by the fuzzy member-

ship values. The algorithm is iterative and uses the follow-

ing equations:

ci =
1

∑n

j=1
um
ij

n
∑

ij

um
ijxij , i = 1, ..., c (2)

uij =

[

1/ |xj − ci|
2
] 1

(m−1)

∑c

k=1

[

1/ |xj − ck|
2
] 1

(m−1)

, i = 1, ..., c; k = 1, ..., n

(3)

Given the number of cluster centers c, and the exponent

weight m, FCM clustering procedure for generalizing a case

base consists of the following steps:

Step 1. Initialize U (0) randomly; initialize C(0) and calcu-

late U (0). Set the iteration counter α = 1.

Step 2. Compute the cluster centers C(α) according to

equation (2) given the membership value matrix, U (α).

Step 3. Update the membership values U (α) according to

equation (3) given the set of cluster centers, C(α).

Step 4. Stop the iteration if the maximum number of it-

erations is reached or when the improvement between

two consecutive iterations is less than the minimum

amount of improvement specified (ǫ).

max

∣

∣

∣
u
(α)
ij − u

(α−1)
ij

∣

∣

∣
≤ ǫ

else let α = α+ 1 and go to step 2.

Step 5. We then used the resulting cluster centers C =

{c1, . . . , cc} as generalized version of cases in the case

base.

There are two main reasons why the cluster centers are

suitable for representing the cases in the case base: (i) FCM

finds the most characteristic point in each cluster as the

’center’ of the cluster. (ii) FCM can capture the actual

data distribution (by using the training data) which will

interpret the future data well.

By doing this way, the number of cases in the case base,

as well as the number of case matching, is reduced to c.

After a set of matching cases were retrieved, the solutions

stored in the retrieved cases will be adapted into a final

solution which is fit for the current problem. An algorithm

used to carry out this task is described in Section 3.3.

Similarity Measure and Case Retrieval

Case retrieval is the process of finding within the case

base the prototypes that are the most promising classes

to the current case. The retrieval algorithm is begun by

deciding to which classes the present case is closest to. The

certainties of the case prototypes and the matching degree

are expressed by means of Euclidean distance. The two

closest case prototypes are selected here for using in a case

adaptation which has been argued that adaptation may be

the most important step of case-based reasoning since it

adds intelligence to what would otherwise be simple pattern

matchers.

3.3 Case Adaptation

In problem solving CBR, case adaptation is the process

of transforming a solution of retrieved cases into a solu-

tion appropriate for the current problem. In this section

we describe an algorithm for deriving the final solution,

[k̃min, k̃max], from each individual case solution [rmin, rmax],

in order to make it suitable for solving the current problem.

We begin by noting that when cases in a case base are

partitioned into c clusters with different degree of member-

ship, it is not necessary that all case members in the same

cluster share the same solution. The differences between so-

lutions associted with cluster members can vary from small

to large. Membership value derived from FCM allows us to

take into account the relative level of importance of each

case member in the cluster. Thus, cases that share fewer

features of the cluster (i.e. has higher distances from case

prototype or lower membership values) will have fewer con-

tribution (or less influence) to a new solution than cases

highly close to a case prototype. Furthermore, one case can

give a contribution to more than one cluster (but in differ-

ent degrees), especially, cases that lie on transition between

two clusters. This property comes in useful to compensate

the ambiguity of case desciption in our domain problem.

Since we are working on the space of uncertain and/or in-

complete data, directly using the solution of only one (clos-

est) retrieved case may lead to unsatisfactory results. The

basic idea underlying our algorithm is that: Once the new

case ĉ presented in the feature space, it certainly lies be-

tween the two closest cluster centers ci and cj . This means

that the features of the current case is likely to be similar
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to the features of either cluster protype ci or cj , and the

solution of the new case ĉ should be contributed by the two

cluster protype ci or cj . Thus, we define the new solution

of the new case ĉ as [k̃min, k̃max], where k̃min = min(k̄i, k̄j),

k̃max = max(k̄i, k̄j), and k̄i and k̄j are fuzzy mean region

of cluster protype ci and cj , respectively. Fuzzy mean re-

gion can be derived from all fuzzy solutions [r̃min, r̃max] of

all case members in the cluster. In this work, we assume

that every case in the case base belongs to every cluster

C1, ..., Cn. Thus, a fuzzy mean regions k̄i of cluster protype

ci can be computed as

k̄i =
(

r̃
(j)
min + r̃(j)max

)

/2, j = 1, ..., n (4)

where [r̃
(j)
min, r̃

(j)
max] is a fuzzy solution of case member j.

Fuzzy solution for each case can be derived by weighting its

original solution [rmin, rmax] with its corresponding mem-

bership value as

r̃
(j)
min =

∑n

j=1
uijr

(j)
min

∑n

j=1
uij

i = 1, ..., c; j = 1, ..., n

r̃(j)max =

∑n

j=1
uijr

(j)
max

∑n

j=1
uij

, i = 1, ..., c; j = 1, ..., n

The new deriving solution [k̃min, k̃max] will be given to the

segmentation combination algorithm for combining a given

segmentation ensemble. Once k̃max − k̃min +1 combination

results were computed, the optimal segmentation selection

method will select the optimal segmentation among them

to produce the final result.

4. Experiments

We first describe the dataset, the segmentation ensemble

framework and the evaluation method used in the experi-

ments. Then the series of experimental results are reported

and discussed.

4.1 Experimental Settings

Image Dataset

The natural images with human segmentations from the

Berkley segmentation dataset [Martin 01] are used. The

dataset consists of 300 color images of size 481×321 or vice

versa, each having multiple manual segmentations. The

human segmentations are used only for evaluating segmen-

tation results produced by our approach.

Automatic Evaluation of the Segmentation Results

We follow the concept of mutual information to quan-

tify the statistical information shared between two cluster-

ings. The quality of combination results can be evaluated

in terms of consistency with the ground truth images. The

normalized version of mutual information, φ(NMI), which

is used to quantitatively evaluate the segmentation quality

against the ground truth, is defined as

φ(NMI)(Sa, Sb) =

|Sa|
∑

h=1

|Sb|
∑

l=1

|Rh,l| log
n · |Rh,l|

|Rh| · |Rl|
√

√

√

√

|Sa|
∑

h=1

|Rh| log
|Rh|

n

|Sb|
∑

l=1

|Rl| log
|Rl|

n

where Rh and Rl are regions from Sa and Sb, respectively,

Rh,l denotes the common part of Rh and Rl, and n is the

image size. The value domain of φ(NMI) is [0, 1]. Larger

NMI values indicate better segmentation that shares more

information with the ground truths, and thus can be con-

sidered as higher quality. When there are more than one

ground truth per input image, one segmentation result is

compared to all manual segmentations and the average nor-

malized mutual information (ANMI) is reported.

φ(ANMI)(Ŝ,Λ) =
1

N

N
∑

q=1

φ(NMI)(Ŝ, Sq)

Segmentation Ensemble Generation

An ensemble Λ = {S1, ..., SN} of N segmentations of the

same image can be produced in several ways, for example,

by using different algorithms or with the same algorithm

but different parameter values. In our experiments mul-

tiple segmentations are obtained by varying the parame-

ter values of the same segmentation algorithm in an ap-

propriate range. In this work we use the efficient graph-

based image segmentation algorithm [Felzenszwalb 04] for

segmenting an image because of its competitive segmenta-

tion performance and high computational efficiency. The

algorithm has three parameters: smoothing parameter (σ),

a threshold function (k), and a minimum component size

(min area). We obtained 24 segmentations of an image

by varying the parameter values (fixing min area = 1500

and varying σ = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and k = 150,

300, 500, 700). The sampled values of parameters within

these ranges are chosen so as to yield segmentations with

perceptible differences and acceptable average quality.

Random Walker-Based Segmentation Combination Algo-

rithm

In this study we used the random walker-based segmenta-

tion combination algorithm proposed in [Wattuya 08]. The

reasons are (i) the algorithm, in contrast to the few early

works, is able to work with the most general class of seg-

mentation combination (i.e. each input segmentation can

have an arbitrary number of regions, which is a fundamental

property required for computing the case base solution), (ii)

it is efficient enough to be capable of evaluating a series of

possible combination results with different k regions. (iii) it

allows us to choose methods to select an optimal segmenta-

tion (from a set of combination output) independently from

the combination algorithm. Methods for selecting optimal

segmentation will be discussed in following subsection.

The segmentation combination algorithm begins with au-

tomatically extracting k seeds (corresponding to k image re-

gions) from Λ. Pixels with high co-association values among
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N initial segmentations are likely to be selected. Given a

set of seeds and a graph G constructed from the initial

segmentations (by using co-association values as weights of

graph edges), the random walker algorithm performs the

calculation by assigning to each pixel a k-tuple vector that

specified the probability (i.e., co-association values) that

a random walker starting from each unseeded pixel will

first reach each of the k seeds. A final segmentation is de-

rived from these k-tuples by assigning each pixel the label

of the largest probability. Full algorithm details are given

in [Wattuya 08].

Automatic Optimal Segmentation Selection

The best segmentation in the set of combination results

can be either judged by human or automatic evaluated by

optimization methods. In this work we choose the MDL-

based selection approach proposed in [Wattuya 10] to auto-

matically select an optimal segmentations. The major rea-

son is that the computation in the MDL-based approach is

independent of the quality of initial segmentations in an en-

semble. The generalized median-based selection approach

proposed in [Wattuya 08] is able to achieve its fully per-

formance in the situation where more than half of initial

segmentations in an ensemble have good quality. When

majority population in an ensemble is of poor quality, it

degrades the power of the approach. This may be one of

the causes why the accuracy of the results produced by the

MDL-based approach is slightly better than the accuracy

of the results produced by the generalized median-based

approach [Wattuya 10].

The MDL-based selection method [Wattuya 10] was

adapted from the MDL-based objective criterion for image

segmentation proposed by Rao et al. [Rao 09]. The crite-

rion is based on the minimum description length principle

to encode both the texture and boundary information of a

natural image and defines the optimal segmentation of an

image as the one that minimizes its total coding length.

Adaptive Texture Encoding: Rao et.al construct texture

vectors that represent homogeneous textures in image seg-

ments as follows. Let the w-neighborhood Ww(p) be the set

of all pixels in a w × w window centered at pixel p. They

construct a set of features X by taking the w-neighborhood

around each pixel in I across the three color channels, and

then stacking each window as a column vector:

X =
{

xp ∈ ℜ3w2

: xp = Ww(p)
S for p ∈ I

}

.

For ease of computation, they reduce the dimensionality of

these features by projecting the set of all features X onto

their first D principal components. They denote the set

of features with reduced dimensionality as X̂ and choose

to assign D = 8. Subsequently, the texture information

is encoded using a Gaussian distribution. First Rao et.al

consider a single region R with N pixels. For a fixed quan-

tization error ǫ, the expected number of bits needed to code

the set of N feature window X̂ up to distortion ǫ2 is given

by:

Lw,ǫ(R) = (
D

2
+

N

2w2
)log2det(I+

D

ǫ2
Σ̂w)+

D

2
log2(1+

‖µ̂w‖
2

ǫ2
).

(5)

Adaptive Boundary Encoding: Rao et.al apply a well-known

scheme, the Freeman chain code, for representing bound-

aries of image regions. In this coding scheme, the orienta-

tion of an edge is quantized along eight discrete directions.

Let {ot}
T
t=1 denote the orientations of the T boundary edges

of R. Since each chain code can be encoded using three bits,

the coding length of the boundary of R is

B(R) = 3

7
∑

i=0

♯(ot = i).

Given the prior distribution P [∆o] of difference chain codes,

B(R) can be encoded more efficiently using a lossless Huff-

man coding scheme:

B(R) = −

7
∑

i=0

♯(∆ot = i)log2(P [∆o = i]). (6)

Minimizing Coding Length: Suppose an image I

can be segmented into non-overlapping regions R =

R1, ..., Rk,∪
k
i=1Ri = I . Based on the coding length func-

tions developed in (5) and (6), the total coding length of

the image I is

LS
w,ǫ(R) =

k
∑

i=1

Lw,ǫ(Ri) +
1

2
B(Ri). (7)

Note that the boundary term is scaled by a half because

we only need to represent the boundary between any two

regions once. The optimal segmentation of I is the one that

minimizes equation (7).

4.2 Experimental Results

We have conducted a series of experiments to verify the

effectiveness of our approach in 3-fold cross-validation. The

original data set was randomly partitioned into three mutu-

ally exclusive subsets, each contains 100 images. Of the K

subsets, a single subset is retained as the test set for testing

our case-base reasoning, and the remaining K − 1 subsets

are used as training data (for building a case base). The

cross-validation process is repeated K times, with each of

theK subsets used exactly once as the testing data on which

the final performance evaluations are carried out. The K

results from the folds are reported as well as averaged value

for an overall performance. In the experimental reports, we

will refer to the three subsets as ’testset1 ’, ’testset2 ’ and

’testset3 ’, respectively.

Traditional Image Segmentation Combination Approach

This approach is used as a baseline segmentation com-

bination framework to verfy our approach. The steps of

computing the final combination result in the original im-

age segmentation combination framework [Wattuya 08] are

as follows:

6
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Table 1: Average performance measures of ’Full-Space-

Search’ and ’Optimal-Subspace-Search’ approaches.

Test Full-Space-Search Optimal-Subspace-Search

set ANMI ANMI T

1 .6112(±.1430) .6066(±.1377) 1.70

2 .6107(±.1347) .6079(±.1329) 1.77

3 .6283(±.1382) .6187(±.1361) 1.66

Avg. 0.6167 (±.1386) .6111 (±.1356) 1.71

Step 1. For each image in each test set, a 24-segmentation

ensemble is generated by applying 24 parameter com-

binations to the efficient graph-based image segmenta-

tion algorithm.

Step 2. For each ensemble in each test set, the random

walker-based segmentation combination algorithm is

run kmax − kmin + 1 rounds to produce a series of

kmax − kmin + 1 combination results.

Step 3. The MDL-based segmentation selection algorithm

is used to search for an optimal final result as follow:

- For each combination result in the search space
Compute the MDL-value according to (7).

- The optimal segmentation combination is given by

the one that minimizes the objective function.

The algorithm needs to run, in total, kmax − kmin + 1

interations in Step 2 and 3. We will refer to this number

as the size of search space T , T = kmax − kmin + 1, and

refer to this approach as Full-Space-Search for reporting

experimental results. The range [kmin, kmax] is set to [2,

50], the same as in [Wattuya 08].

The average performance of ’Full-Space-Search’ for all

three test sets are reported in Table 1 column 2. We did

not put values of T for this approach in the table, since it

is equal to 49 for all cases.

Integrating with Soft Case-Based Reasoning Approach

By integrating our case-based reasoning into the original

framework, it can reduce the search space T to k̃max−k̃min+

1. We will refer to this approach as Optimal-Subspace-

Search in the experimental reports. In the experiment, we

empirically set the number of clusters to 50. However, va-

lidity criteria, such as [Halkidi 02], can be applied to search

for optimal clusterings which may improve the accuracy of

the current results (remains future work). For each test

set we performed 50 runs of the FCM algorithm with ran-

dom initialization of cluster centers, and retained only the

results that corresponded to the best results (maximum

ANMI value attained) for comparison purposes, however,

a small variance on the performance over these 50 experi-

ments was observed.

Figure 1 shows some examples of model order selection

results produced by our method. The resulting [k̃min, k̃max]

are shown under each of its input image. Note that all re-

sults have k̃min = k̃max, where the optimal segmentation

selection is not required. The segmentation results shown

side by side with the solution of the case-base are for visual

evaluation of the obtained results, in comparison with the

image contents. The segmentation lines are superimposed

on the original image for visualization. As shown in the fig-

ure, our case-based reasoner can predict a reasonable range

of k, based on the underlying assumption. Case-based rea-

soner gives relatively high k̃min, k̃max values to input images

with high variation in intensity values, and gives relatively

low k̃min, k̃max values to input images with nearly constant

regions. It is also interesting to note that there are also the

situations that the case-based reasoner can predict a rea-

sonable range of k. Unfortunately, either a segmentation or

a segmentation combination algorithm fail to obtain mean-

ingful regions, which degrades our formulation suboptimal.

Column 3 and 4 in Table 1 summarizes the average perfor-

mances and the average T obtained over 100 images of three

test sets. A case-based reasoner can deliver a very tight

ranges [k̃min, k̃max] according to our expectation, which sub-

staintialy reduces the search space, namely, from T = 49 to

T = 1.71 in average over all three test sets, or approxi-

mately 29 times reduction. However, the average accuracy

is slightly degraded. Two possible causes of degradation

are due to (i) the estimation errors in our method, for ex-

ample, by using the mean values (i.e. fuzzy mean region)

for estimating the solution [k̃min, k̃max]. (ii) the small body

of knowledge, namely, the cases stored in the case base is

too small to cover the problem space. An effective way to

solve the first problem is by case base solution relaxation

(described below) and to solve the latter problem by case

learning, which will be discussed later in this section.

In this work, we propose a simple strategy to solve

the degradation caused by the estimation error in our

method by using a relaxation theshold, τ , to relax the

very tight range. Thus, the range [k̃min, k̃max] becomes

[k̃min − τ, k̃max + τ ]. Table 2 shows the extension results

of the results reported in Table 1 for τ = 1, 2, 3 and 4,

respectively. The average performance whose value higher

than the average performance of Full-Space-Search are high-

lighted in bold (i.e. τ = 4 for testset1, τ = 2 for testset2,

τ = 3 for testset3, with τ = 3 for overall performance). It

is interesting to note that performance of ’Optimal-Range

is more stable than performance of Full-Space-Search in all

cases (We will discuss about stability of the approaches later

in this section.). As we expected, the average performances

of Optimal-Subspace-Search improves as τ increases. How-

ever, it is important to note that it is not necessary that

increasing τ will monotonically increases the average per-

formance. The average performance can fluctuate along the

way and, eventually, converges to the average performance

of Full-Space-Search when the optimal range [k̃min, k̃max]

is expnded to the full range [kmin, kmax]. As suggested by

the experimental results, the value of τ ∈ [1, 4] yields sat-

isfactory performance, in terms of both accuracy and T .

The last row of Table 2 shows the average performance and

the average T over the three test sets. Optimal-Subspace-

Search can overcome Full-Subspace-Search when τ = 3 and

can significantly reduce T from 49 to 3.71, 5.71, 7.71 and

9.10 or reduction approximately by 13, 8, 6 and 5 times, for

τ = 1, 2, 3 and 4, respectively, while preserves the quality

7
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,

ANMI = 0.5765 ANMI = 0.7846 ANMI = 0.7238 ANMI = 0.7211
k = 5 ∈ [5, 5] k = 8 ∈ [8, 8] k = 9 ∈ [9, 9] k = 13 ∈ [13, 13]

,

ANMI = 0.6565 ANMI = 0.5580 ANMI = 0.6052 ANMI = 0.3378
k = 16 ∈ [16, 16] k = 19 ∈ [19, 19] k = 20 ∈ [20, 20] k = 21 ∈ [21, 21]

Figure 1: Example of segmentation results of the Optimal-Subspace-Search. The quantities under images are ANMI value,
number of regions, and the optimal range [k̃min, k̃max] computed by our proposed CBR.

of the results.

Comparison Discussion

We begin a comparison discussion by argueing that there

is high consistency between the two approaches supported

by the results. Figure 2 shows example segmentation re-

sults that were, exactly the same, selected by both Optimal-

Subspace-Search (with τ = 1) and Full-Space-Search ap-

proaches. The images with underlying descriptions under

them indicates that they were also selected by Optimal-

Subspace-Search without relaxation (τ = 0). This is some-

what surprising. However, selecting the same results as

Full-Space-Search approach did not necssarily means that

we select the correct (optimal) results. The performance

of Full-Space-Search depends heavily on the effectiveness of

the used MDL-based objective function, which sometimes

leads to very poor performance. This is possibly due to

the instability of the objective function. Becuase of the

large degree of variability and complexity encountered in

real-world images, it is quite impossible to understand com-

pletely the unpredictable behaviour of the objective func-

tion (e.g. what factors that lead to the succces/failure of a

solution). Some example results in this situation are shown

in Figure 3. The first row (comparing along side on the left

the results of Optimal-Subspace-Search) shows example re-

sults where the MDL-based objective function selects poor

results with too high number of regions, and the second row

shows selected results with too low number of regions. It is

quite obvious that our case-based reasoning is substaintially

profitable in this situation. It indirectly helps the objective

function not to select unpleasant results by limiting the

search in the whole search space to the potential subspace.

In other words, it filters out the weak segmentations from

a consideration, while leaving only the potential solutions

to be selected. This situation shows a valuable side bene-

fit of our case-based reasoning in alleviating a performance

degradation caused by instability of objective function.

Given the fact that we do not know the optimal number of

regions for a particular image in advance, the comparative

performance of our approach is remarkable and reveals its

potential in dealing with the difficult model order selection

without ground truth.

Case Learning and Case-base Maintenance

As we mentioned earlier the performance degradation

caused by the small body of knowledge. This problem can

be solved by case learning. One of the key successes of a

problem-solving case-based reasoning is its coverage of the

problem space in the target domain. The case-based rea-

soning system should contain all the essential cases that

could be used to generate solutions to all possible current

cases (i.e. [kmin, kmax] in our domain problem). As case-

based reasoning systems are used, they encounter a wider

range of problem situations. Thus, case learning must be

performed to help in solving future problems. A simple

learning method is the addition of a new problem and its

solution to the case base. The new cases must be tested and

determined its successfulness level for solving the problem

before added into the case base. However, the addition of

cases may not necessarily improve the coverage of a case

base. Thus, additional primary tasks, such as identification

of the essential cases and missing knowledge, are needed.

As cases increase, the greater the problem space covered.

However, too many cases stored in a case base will degrade

retrieval efficiency. Thus, case-base maintenance, such as

redundant case deletion, is needed. Case learning and case-

base maintenance remain our future work.

5. Conclusions

Our contribution of this work is to investigate the use-

fulness of a soft case-based reasoning for solving the model

order selection problem. Our proposed case-based reason-

ing has been verified in an application of image segmen-

tation combination. Prelimimary experiments show good

results of our approach that can predict a shortlist of po-

tential number of regions. The benefits of integrating the

case-based reasoning into original segmentation combina-

tion framework not only significantly reduce the search

space without degrading the accuracy performance, but also

8
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Table 2: Average performance measures of Optimal-Subspace-Search with τ = [1, 4].

Test τ = 1 τ = 2 τ = 3 τ = 4

set ANMI T ANMI T ANMI T ANMI T

1 .6082(±.1382) 3.70 .6086(±.1381) 5.70 .6105(±.1380) 7.70 .6115(±.1394) 9.70

2 .6103(±.1311) 3.77 .6124(±.1312) 5.77 .6117(±.1311) 7.77 .6120(±.1289) 9.77

3 .6259(±.1352) 3.66 .6273(±.1344) 5.66 .6300(±.1335) 7.66 .6303(±.1344) 9.62

Avg. .6148(±.1348) 3.71 .6161(±.1345) 5.71 .6174(±.1342) 7.71 .6179(±.1342) 9.70

significantly improve the accuracy of particular results af-

fected by the instability objective function used in optimal

segmentation selection method. Novel feature of our pro-

posed case-based reasoning is the ability to predict the op-

timal range of k without the need of ground truth segmen-

tations, which are generally not available in practice. The

focus of our current work is image segmentation combina-

tion. It should be mentioned that our case-based reasoning

is a general framework and can be integrated to a general

class of segmentation combination system.
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,

ANMI = 0.7556 ANMI = 0.7846 ANMI = 0.6541 ANMI = 0.2981
k = 4 ∈ [4, 9] k = 8 ∈ [7, 9] k = 13 ∈ [12, 14] k = 15 ∈ [14, 17]

ANMI = 0.7115 ANMI = 0.7879 ANMI = 0.8021 ANMI = 0.7216
k = 16 ∈ [15, 17] k = 18 ∈ [15, 18] k = 20 ∈ [17, 20] k = 22 ∈ [20, 24]

Figure 2: Example of segmentation results: the Optimal-Subspace-Search (with τ = 1) selects the same results as Full-Space-

Search. The quantities under images are ANMI value, number of regions, and the optimal range [k̃min, k̃max] computed by

our proposed CBR. The segmentation is superimposed on original image.

,

ANMI = 0.6241 ANMI = 0.4690 ANMI = 0.6871 ANMI = 0.6602
k = 7 ∈ [7, 9] k = 49 k = 11 ∈ [11, 14] k = 29

ANMI = 0.4257 ANMI = 0.3016 ANMI = 0.4001 ANMI = 0.3281

k = 11 ∈ [11, 14] k = 2 k = 17 ∈ [13, 17] k = 4

Figure 3: Example of segmentation results: Optimal-Subspace-Search (with τ = 1) selects better results (on the left) than

Full-Space-Search (on the right). The quantities under images are (on the left) ANMI value, number of regions, and the

optimal range [k̃min, k̃max] , and (on the right) ANMI value and number of regions.
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