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Web caching is one of the fundamental techniques for reducing bandwidth usage and download time while browsing the World Wide 

Web. In this research, we provide an improvement in web caching by combining the result of web usage mining with traditional web 

caching technique. Web cache replacement policy is used to select which object to be removed from cache when the cache is full and new 

object should be put into the cache. There are several techniques which select the object to be removed, such as the size of the object, the 

number of times the object was used, or the time that the object is added into the cache. However, the flaw in those approaches is that 

each object is treated separately without considering the relation of those objects. We have developed a system that can record users’ 

browsing behavior at resources level. By using information gathered from this system, we can improve web cache replacement policy so 

that number of replacement in cache is reduced. 

 

1. Introduction 

In recent years, the internet has become the most important 

tool for communication and interaction among people resulting 

in the increasing of data bandwidth. Web caching is well known 

strategy for improving the performance of web based system. 

Web caching can improve the performance of the WWW by 

creating the duplication of popular objects and temporary storing 

them in cache storage near the users. If those objects are 

requested again by the users, users will receive those objects 

from the cache instead of the original servers. This is called “hit” 

or “cache hit”. Web caching gives benefits to both web users and 

content owners because 1) caching reduces total bandwidth usage, 

2) caching reduces web page load time and 3) caching reduces 

loads on web site server [1]. Web caching can be applied at 

original server, proxy server or client-side machine. In this 

research, we focus on client-side caching (or browser caching) 

because client-side caching is more economical and effective 

than server or proxy caching [2]. 

Since cache storage has limited space, as users continuously 

browsing the internet, cache storage will eventually become full. 

When a new object need to be stored in the cache while the cache 

is full, cache replacement policy will determine which object will 

be removed to make enough space for the new object. To use the 

limited cache space in the most efficient way, objects that will 

not be used again should be removed from the cache first. 

There are many cache replacement policies, each with their 

own algorithms for selecting object to be removed. The general 

goal of cache replacement policies is to increase cache hit rate. 

The most well-known algorithms are LRU (least recently used) 

and LFU (least frequency used). LRU chooses object to be 

removed based on the last time the object is used while LFU 

chooses object based on how many times the object is used. 

Others properties are used in others algorithms such as size of the 

object, total time used for download the object, or the last 

modification time of the object. There are also many algorithms 

that use more than one attributes to choose the object to be 

removed such as Hyper-G [3] which uses the combination of 

frequency, recency and size of the object. 

Each algorithm has its own advantages over others. For 

example, in the case that system has sufficient processing power 

and memory resources, complex algorithms which require more 

computation are more suitable. On the other hand, on a system 

with limited processing and memory resources, randomized 

strategy is preferred because it requires less memory and 

computation [4]. 

Web usage mining is one of the interesting topics by many 

researchers since the WWW becomes a part of our daily life. 

Web usage mining is the process of extracting useful information 

from users’ browsing history. The benefit of web usage mining is 

to let researchers understand the behavior of internet users and 

use that knowledge to improve their web browsing experiences. 

This technology enables web sites to be personalized for each 

individual user. One of the successful examples of web usage 

mining is real-time recommendation system, such as 

Youtube.com recommended VDO or Amazon.com book 

recommendation.  

In this research, we incorporate web usage mining data into 

the cache replacement policy to create a new algorithm that can 

perform better than existing algorithms. Proposed algorithm is a 

hybrid algorithm based on recency, frequency and users’ web 

usage history. The idea of this algorithm comes from the fact that 

nowadays users tend to visit the same set of websites every day. 

Objects from those websites should be prioritized and should 

stay in the cache longer than objects from other websites.  

2. Related work 

2.1 Web caching strategies 

Web caching had become a hot topic among researchers since 

Luotonen and Altis [5] introduced proxy server to research field 

in 1994. There are at least 3 survey papers on web cache 
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strategies is presented by Podlipngi and Bӧszӧrmenyi [1] in 2003. 

They classified replacement strategies into 5 classes: recency-

based strategies, frequency-based strategies, recency/frequency-

based strategies, function-based strategies, and randomized 

strategies. Recency-based strategies use temporal factor to 

manage the cache. Basically, the least recently referenced object 

will be removed from the cache. Recency-based strategies are 

adaptive to popularity change and mostly require low overhead. 

However, these strategies usually place too much emphasis on 

recency factor alone, which is the disadvantage of recency-based 

strategies. Frequency-based strategies use frequency as their 

main factor. Frequently called objects or popular objects tend to 

be kept in the cache longer than unpopular objects. These 

strategies perform very well at caching objects in the 

environment that popular objects do not change frequently. 

However, on quickly changing environment, frequency-based 

strategies will perform poorly. Recency/frequency-based 

strategies use both recency and frequency properties to find 

objects to be removed. Many strategies in this class also use 

other factors in their algorithms. The combination usually bring 

better results but at the cost of overhead and complexity. 

Function-based strategies use general function to calculate scores 

for all objects in the cache then object that has the least score will 

be removed. Many parameters such as size, recency, or 

frequency are used in the function. The strongest advantage of 

these strategies is that no particular attribute is dominant. 

However, these strategies create the largest overhead and 

complexity among all classes. The last class is randomized 

strategies. The goal of these strategies is to reduce the 

complexity and overhead. In result, these strategies are very 

simple to implement. The problem of these strategies is the 

evaluation. Different simulations on same test data set can give 

different results. 

Wong [4] stated that there are more than 50 cache policies by 

the year of 2006 which is the year he published his cache 

replacement policies review. Instead of arguing about which 

cache replacement algorithms are better, he stated that each 

algorithm will perform better than others in their favored 

environment. For example, frequency-based strategies perform 

well when popular objects are not changing rapidly. Romano and 

ElAarag [6] did a quantitative study of web cache replacement 

strategies by comparing 19 different strategies running with the 

same data sets. 

As stated by Wong in his research, cache replacement policies 

are heavily researched in the past. Newer researches in this topic 

are mostly conduct by using knowledge from another research 

fields. Tirdad et al. [7] used genetic algorithm and genetic 

computation to create a model for cache replacement policy. Ali 

and Shamsuddin [8] used neuro-fuzzy system to create an 

intelligent web caching scheme. Torkzaban and Rahmani [9] 

used multi expert technique to create a cache system that can 

select the best cache policy depending on the environment. 

Geetha et al. [10] created SEMALRU, a LRU based algorithm 

that uses semantic data of the web pages. 

2.2 Web usage mining 

Web usage mining is the process of extracting useful 

information from users’ browsing history. Srivastava et al. [11] 

offered a taxonomy for web usage mining in 2000 since then web 

usage mining has been given more interest in web mining field. 

Web usage mining can be done at 3 levels: server, proxy server, 

or client-side machine. In an early stage, web usage mining 

usually done by analyzing server logs getting from severs or 

proxy servers, such as the work of Myra Spiliopoulou [12] where 

web usage mining data is used for evaluating web sites. Client-

side log mining is getting more popularity because of the 

technological advances such as web browser plugins that allows 

researchers to collect data directly from users. 

Studies of client-side logs can give many insights about users’ 

behaviors. Zhou et al. [13] proposed a temporal-based web 

access behavior which focuses on time of the day that users 

access the web. Khoury et al. [14] created a graph based on users’ 

activities for some period of time. The result is that they can 

identify users’ behaviors such as using Wikipedia or e-mail as 

hubs for traversing to other websites or finding frequent traverse 

paths of users.  

3. Algorithm 

Our algorithm is based on LRU (Least Recently Used) strategy 

but with extra properties. Algorithm is divided into 3 parts: cache 

storage structure, cache insertion policy, and cache eviction 

policy. The main idea behind this algorithm is based on the result 

of Khoury et al. and the result of our own usage mining data that 

users tend to visit a same set of websites every day. Khoury et al. 

reported that Wikipedia sites and e-mail sites are the hub of users 

browsing sessions, while in our own data, social media websites 

like Facebook and news websites are the main hub. Even our 

algorithm is based on LRU, our algorithm falls into 

Recency/frequency-based strategies class on Podlipngi and 

Bӧszӧrmenyi classification because we also incorporate 

frequency-based properties into our algorithm. 

3.1 Cache storage structure 

Like other LRU based strategies, our cache objects (such as 

pictures, Java script files, html files) are kept in a list. Each 

object in a list contains many properties. There are 6 properties, 

object id, next object id, previous object id, size of the object, 

object’s host, and object’s HP (algorithm generated integer 

value). Object’s host is the URL of the server that provides users 

with this object. This is the extra information gained from web 

usage mining. In normal browsing situation, this information is 

omitted from the users. However, with network tools, it is 

possible to record this information while users are browsing the 

internet. Object’s HP stands for object’s hit-point. This integer 

value is generated and managed by the algorithm. Objects with 

less HP are considered unimportant and will be removed first if 

eviction occurs. The maximum HP value need to be defined to 

prevent objects from being too popular and will never be evicted 

from the cache. The minimum HP value is 0. 

Apart from objects storage, this algorithm needs to keep at 

least 2 lists of unique host URL: today’s host list and yesterday’s 

host list. The size of the list is very small compare to objects list 

because many objects share the same host URL. These lists take 

part in determining the HP of the objects. The lists are 

maintained on daily basis. 
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Compared with LRU algorithm, our algorithm requires more 

space since ours has to store lists of unique hosts and for each 

object in the objects list, our algorithm has more properties. 

3.2 Cache insertion policy 

When new object wants to be entered the cache, the following 

algorithm (Figure 1.) is applied. 

 

 

The last condition in flowchart is the important point of this 

algorithm. This means objects are given more hit-point if they 

are related to previous browsing history. The second condition 

from the last is for collecting users’ history for use later. If object 

entering the cache is not new object (cache hit occurs), the hit 

object will be placed at the end of the list and its HP will increase 

by 1.At 24 hours interval, today’s host list will be copied to 

previous day’s host list. Then today’s host list will be emptied. It 

is also possible to have more than one list of previous host URL. 

 LRU insertion policy is quite different from ours since we 

have more properties (HP and host URL) and a host list to 

maintain. Also normal LRU based algorithm will insert new 

object at the front of the list while remove the last object in the 

list (oldest object), our algorithm puts new object at the back of 

the list instead. The reason is because our algorithm eviction 

process is quite different in the eviction process of LRU. 

3.3 Cache eviction policy 

Once the cache is full and new object need to be put in, 

eviction process will be called. The process works as followed. 

1. Sort object list from high HP to low HP, If HP is the same 

newer object will be placed in front of older object.  

2. Remove objects from the cache, starting from the end of the list 

(the less HP end) until X% of cache space is available. 

3. Reduce HP of all objects in the list by 1. 

The eviction process is explained with an example shown in 

Figure 2. Assume that  

- There are 12 objects in our cache, represent with rectangle. 

- Object 1 is at the head of the list while object 12 is at the 

end of the list. 

- Object height refers to HP of that object. Objects 1, 2, and 

10 have 3 HP. Objects 3, 7, 11, and 12 have 2 HP. Objects 4, 5, 6, 

8, and 9 have 1 HP. 

- Blue objects are sorted from previous eviction process. 

- Yellow objects are new objects or objects that got “cache 

hit” and got moved to the end of the list. 

Figure 1. Cache insertion flowchart 

Figure 2. Cache eviction algorithm example 
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In LRU, once a cache is full, insertion and eviction occurs 

almost always together because LRU only evicts as less objects 

as possible to maintain the cache to be near full all the time. This 

can increase the hit chance because there are many objects in the 

cache. However, in our algorithm we already determined that 

objects that have less chance of a hit are at the end of the list. 

Therefore, it is safe to remove many of them at once. Moreover, 

with this HP system, new objects need to stay in the cache for 

sometimes in order to gain more HP value. If eviction process 

occurs often, all new objects are likely to be removed. 

The final step of reducing all objects HP by 1 is crucial in this 

algorithm. In case of a popular object with maximum HP 

(assume that maximum HP is 5) that suddenly not get hit again. 

This object will be reduced to 0 HP in 5 eviction processes. 

Object that has 0 HP is guaranteed to be removed from the cache 

because new object is starting with 1 HP. 

Our algorithm has some configurable parameters which can be 

adjusted.  

- Maximum HP – high maximum HP results in a longer stay 

of the object cache (if it can manage to reach that HP). In a 

data set that popularity of objects is changing regularly, 

maximum HP should be set to a low value. 

- X% of eviction – higher X value means longer time before 

cache need to perform eviction process again. However, 

higher X has higher risk of losing popular objects. 

- Number of previous host list – in this experiment we used 

only 1 list which is yesterday’s list. However, it is also 

possible to keep record of several lists such as weekly list or 

monthly list and award objects that share host URL 

accordingly. 

4. Experiment 

To evaluate our algorithm, first we collected raw web usage 

data from 4 volunteers from different occupations which are 

entrepreneur engineer programmer and student. All of the 

volunteers use internet regularly both for work and personal life. 

Data collection lasted from 3-9 days, depend on the usage of 

each volunteer. There are 2 main reasons we decided to collect 

data by our own, instead of using existing trace data (raw web 

usage data) that available in the internet. The first reason is that 

our algorithm requires host data. Most trace data that are 

available for download does not provide this property. The 

second reason is that most trace data are very old and possibly 

out dated. For example, the latest client-sided trace data from 

The Internet Traffic Archive [14], is collected in 1996 or the 

latest client-sided trace data from web-caching.com [15] is dated 

back in 1998. The WWW is changing all the time especially the 

trend of social networking website such as Facebook. In our trace 

data, Facebook appears very often as both page hit and as web 

hub (users use this website as a start point to link to other 

website). 

Data collection was performed by installing Mozilla Firefox 

and Mozilla Firefox plugin on client machines. Special 

configurations of Mozilla Firefox are needed to be adjusted. 

Most cache functions of web browser were disabled in order for 

plugin to collect accurate browsing data. Volunteers can use 

Firefox as normal web browser while add-on collects browsing 

data in the background. There are many drawbacks in this 

method. 1) Browsing data are highly confidential data. We have 

transformed all raw data into numerical number with irreversible 

method to keep privacy level as high as possible. 2) Volunteers 

were forced to use Mozilla Firefox. The reason we choose this 

browser in our research is from Firefox rich add-on functionality. 

3) Since all cache functions were disabled during the data 

collecting period, browsing speed was reduced due to no cache. 

4) Unlike other data gathering methods such as performing a task 

or answering questionnaires, data collection lasts for several days. 

The task is a burden for volunteers. 

HTTP data was collected in XML format. One HTTP request 

contains many information about data and transaction. One 

request is for one object which means if web page contains 20 

pictures and 1 html file, there will be 21 requests for that page. 

Example of HTTP request can be seen in Figure 3.  

 

There were total of 780 megabytes of raw log data with more 

than 234,425 HTTP requests. We compressed the data into 

numerical number so that it is not irreversible and easier to 

compute in the simulation. The example of compressed data for 

one transaction is “1 3510 47551 0 0 0 221 3502 375 

316894181”. 

 We tested our algorithm and other 3 algorithms which are 

LRU, SIZE, and HYBRID. LRU is the baseline of recency-based 

algorithm. SIZE algorithm emphasizes on size of the object, 

while HYBRID is a mixed strategy between recency, frequency, 

and size. The parameters of our algorithm were X=50, maximum 

HP is 5 and we use 1 host list which is yesterday’s list. We run 

all algorithm on different cache storage size, range from 4KB to 

8MB. The result is shown in Figure 4. X axis refers to hit-rate. Y 

axis refers to cache storage size. Hit-rate translates directly to the 

performance of the cache algorithms, which means the higher the 

better. 

5. Evaluation and Discussion 

Our cache replacement algorithm performed better than 

baseline algorithm LRU at various cache sizes which are from 

4KB up to 1MB. From 1MB both algorithms performances start 

to converge and at 2MB performances of both algorithms are 

converted into same value. Our algorithm also outperformed Size 

and Hybrid at all cache storage size.  

The reason our algorithm performs better than LRU at lower 

cache size is because popular objects did not get called fast 

Figure 3. HTTP Request 
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enough before it got evicted from LRU cache. On the other hand, 

our strategy can give more priority to popular objects by learning 

from the past (via previous day host list). However, when the 

cache size is big enough, the performances of both algorithms are 

the same. The reason that guarantees our algorithm not to be 

worse than LRU in performance is because we incorporate LRU 

into our strategy. 

 Comparison of our algorithm against LRU is as follows. 

Advantages 

- Our algorithm performs better at low storage space 

- Once cache is full LRU will perform cache eviction process 

all the time while our strategy performs once in a while. If 

counting overhead for files I/O, even total files transfer is 

the same, our algorithm will create less overhead. 

Disadvantages 

- Our algorithm is more complex in both structure and 

calculation. Space overhead of our algorithm is for storing 

host property and HP property for every object in cache list, 

plus space for storing unique host list. CPU overhead is for 

calculation of HP value and sorting list when eviction 

occurs. 

 

Our algorithm can be fit perfectly for web browsers on 

smartphones. Since EDGE and 3G, browsing internet via mobile 

devices is very common. Our algorithm is very suitable for low-

end smartphones where memory is very limited. For example, 

one low-end Android based smartphone Sumsung Galaxy Ace 

contains 158MB of RAM. RAM on smartphones is shared by its 

operating system, web browser, and other always-on application 

such as 3G or GPS making RAM very precious resource. In this 

case, by giving away only 1MB of RAM for web caching, 24% 

of objects will receive cache hit. Moreover, smartphone market 

now is very competitive about CPU speed while memory is 

mostly neglected, which can compensate our CPU overhead well.  

6. Conclusion 

In this research, we have proposed a web cache replacement 

policy based on recency-based algorithm and users’ web usage 

data. Our algorithm can perform significantly better than 

baseline LRU algorithm in low cache storage environment and 

perform the same as LRU at higher cache storage environment. 

Our algorithm also generates less files I/O overhead at the cost 

of higher complexity and structure overhead. 

We believe that this technique is suitable for web caching on 

mobile devices especially on low-end smartphones where RAM 

is severely limit but CPU power is sufficient. 
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