
The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 1 -

 Improved Web Cache Replacement Policy Using Web Usage Data

Sorn Jarukasemratana

Tokyo Institute of Technology

W8-59 2-12-1 Ookayama, Meguro

Tokyo, 152-8552 Japan

sorn.jaru@ai.cs.titech.ac.jp

Tsuyoshi Murata

Tokyo Institute of Technology

W8-59 2-12-1 Ookayama, Meguro

Tokyo, 152-8552 Japan

murata@cs.titech.ac.jp

Web caching is one of the fundamental techniques for reducing bandwidth usage and download time while browsing the World Wide

Web. In this research, we provide an improvement in web caching by combining the result of web usage mining with traditional web

caching technique. Web cache replacement policy is used to select which object to be removed from cache when the cache is full and new

object should be put into the cache. There are several techniques which select the object to be removed, such as the size of the object, the

number of times the object was used, or the time that the object is added into the cache. However, the flaw in those approaches is that

each object is treated separately without considering the relation of those objects. We have developed a system that can record users’

browsing behavior at resources level. By using information gathered from this system, we can improve web cache replacement policy so

that number of replacement in cache is reduced.

1. Introduction

In recent years, the internet has become the most important

tool for communication and interaction among people resulting

in the increasing of data bandwidth. Web caching is well known

strategy for improving the performance of web based system.

Web caching can improve the performance of the WWW by

creating the duplication of popular objects and temporary storing

them in cache storage near the users. If those objects are

requested again by the users, users will receive those objects

from the cache instead of the original servers. This is called “hit”

or “cache hit”. Web caching gives benefits to both web users and

content owners because 1) caching reduces total bandwidth usage,

2) caching reduces web page load time and 3) caching reduces

loads on web site server [1]. Web caching can be applied at

original server, proxy server or client-side machine. In this

research, we focus on client-side caching (or browser caching)

because client-side caching is more economical and effective

than server or proxy caching [2].

Since cache storage has limited space, as users continuously

browsing the internet, cache storage will eventually become full.

When a new object need to be stored in the cache while the cache

is full, cache replacement policy will determine which object will

be removed to make enough space for the new object. To use the

limited cache space in the most efficient way, objects that will

not be used again should be removed from the cache first.

There are many cache replacement policies, each with their

own algorithms for selecting object to be removed. The general

goal of cache replacement policies is to increase cache hit rate.

The most well-known algorithms are LRU (least recently used)

and LFU (least frequency used). LRU chooses object to be

removed based on the last time the object is used while LFU

chooses object based on how many times the object is used.

Others properties are used in others algorithms such as size of the

object, total time used for download the object, or the last

modification time of the object. There are also many algorithms

that use more than one attributes to choose the object to be

removed such as Hyper-G [3] which uses the combination of

frequency, recency and size of the object.

Each algorithm has its own advantages over others. For

example, in the case that system has sufficient processing power

and memory resources, complex algorithms which require more

computation are more suitable. On the other hand, on a system

with limited processing and memory resources, randomized

strategy is preferred because it requires less memory and

computation [4].

Web usage mining is one of the interesting topics by many

researchers since the WWW becomes a part of our daily life.

Web usage mining is the process of extracting useful information

from users’ browsing history. The benefit of web usage mining is

to let researchers understand the behavior of internet users and

use that knowledge to improve their web browsing experiences.

This technology enables web sites to be personalized for each

individual user. One of the successful examples of web usage

mining is real-time recommendation system, such as

Youtube.com recommended VDO or Amazon.com book

recommendation.

In this research, we incorporate web usage mining data into

the cache replacement policy to create a new algorithm that can

perform better than existing algorithms. Proposed algorithm is a

hybrid algorithm based on recency, frequency and users’ web

usage history. The idea of this algorithm comes from the fact that

nowadays users tend to visit the same set of websites every day.

Objects from those websites should be prioritized and should

stay in the cache longer than objects from other websites.

2. Related work

2.1 Web caching strategies

Web caching had become a hot topic among researchers since

Luotonen and Altis [5] introduced proxy server to research field

in 1994. There are at least 3 survey papers on web cache

replacement algorithms. A survey of web cache replacement Contact: Sorn Jarukasemratana, Tokyo Institute of Technology,

W8-59 2-12-1 Ookayama, Meguro Tokyo, 152-8552 Japan,

sorn.jaru@ai.cs.titech.ac.jp

3M2-IOS-3b-8

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 2 -

strategies is presented by Podlipngi and Bӧszӧrmenyi [1] in 2003.

They classified replacement strategies into 5 classes: recency-

based strategies, frequency-based strategies, recency/frequency-

based strategies, function-based strategies, and randomized

strategies. Recency-based strategies use temporal factor to

manage the cache. Basically, the least recently referenced object

will be removed from the cache. Recency-based strategies are

adaptive to popularity change and mostly require low overhead.

However, these strategies usually place too much emphasis on

recency factor alone, which is the disadvantage of recency-based

strategies. Frequency-based strategies use frequency as their

main factor. Frequently called objects or popular objects tend to

be kept in the cache longer than unpopular objects. These

strategies perform very well at caching objects in the

environment that popular objects do not change frequently.

However, on quickly changing environment, frequency-based

strategies will perform poorly. Recency/frequency-based

strategies use both recency and frequency properties to find

objects to be removed. Many strategies in this class also use

other factors in their algorithms. The combination usually bring

better results but at the cost of overhead and complexity.

Function-based strategies use general function to calculate scores

for all objects in the cache then object that has the least score will

be removed. Many parameters such as size, recency, or

frequency are used in the function. The strongest advantage of

these strategies is that no particular attribute is dominant.

However, these strategies create the largest overhead and

complexity among all classes. The last class is randomized

strategies. The goal of these strategies is to reduce the

complexity and overhead. In result, these strategies are very

simple to implement. The problem of these strategies is the

evaluation. Different simulations on same test data set can give

different results.

Wong [4] stated that there are more than 50 cache policies by

the year of 2006 which is the year he published his cache

replacement policies review. Instead of arguing about which

cache replacement algorithms are better, he stated that each

algorithm will perform better than others in their favored

environment. For example, frequency-based strategies perform

well when popular objects are not changing rapidly. Romano and

ElAarag [6] did a quantitative study of web cache replacement

strategies by comparing 19 different strategies running with the

same data sets.

As stated by Wong in his research, cache replacement policies

are heavily researched in the past. Newer researches in this topic

are mostly conduct by using knowledge from another research

fields. Tirdad et al. [7] used genetic algorithm and genetic

computation to create a model for cache replacement policy. Ali

and Shamsuddin [8] used neuro-fuzzy system to create an

intelligent web caching scheme. Torkzaban and Rahmani [9]

used multi expert technique to create a cache system that can

select the best cache policy depending on the environment.

Geetha et al. [10] created SEMALRU, a LRU based algorithm

that uses semantic data of the web pages.

2.2 Web usage mining

Web usage mining is the process of extracting useful

information from users’ browsing history. Srivastava et al. [11]

offered a taxonomy for web usage mining in 2000 since then web

usage mining has been given more interest in web mining field.

Web usage mining can be done at 3 levels: server, proxy server,

or client-side machine. In an early stage, web usage mining

usually done by analyzing server logs getting from severs or

proxy servers, such as the work of Myra Spiliopoulou [12] where

web usage mining data is used for evaluating web sites. Client-

side log mining is getting more popularity because of the

technological advances such as web browser plugins that allows

researchers to collect data directly from users.

Studies of client-side logs can give many insights about users’

behaviors. Zhou et al. [13] proposed a temporal-based web

access behavior which focuses on time of the day that users

access the web. Khoury et al. [14] created a graph based on users’

activities for some period of time. The result is that they can

identify users’ behaviors such as using Wikipedia or e-mail as

hubs for traversing to other websites or finding frequent traverse

paths of users.

3. Algorithm

Our algorithm is based on LRU (Least Recently Used) strategy

but with extra properties. Algorithm is divided into 3 parts: cache

storage structure, cache insertion policy, and cache eviction

policy. The main idea behind this algorithm is based on the result

of Khoury et al. and the result of our own usage mining data that

users tend to visit a same set of websites every day. Khoury et al.

reported that Wikipedia sites and e-mail sites are the hub of users

browsing sessions, while in our own data, social media websites

like Facebook and news websites are the main hub. Even our

algorithm is based on LRU, our algorithm falls into

Recency/frequency-based strategies class on Podlipngi and

Bӧszӧrmenyi classification because we also incorporate

frequency-based properties into our algorithm.

3.1 Cache storage structure

Like other LRU based strategies, our cache objects (such as

pictures, Java script files, html files) are kept in a list. Each

object in a list contains many properties. There are 6 properties,

object id, next object id, previous object id, size of the object,

object’s host, and object’s HP (algorithm generated integer

value). Object’s host is the URL of the server that provides users

with this object. This is the extra information gained from web

usage mining. In normal browsing situation, this information is

omitted from the users. However, with network tools, it is

possible to record this information while users are browsing the

internet. Object’s HP stands for object’s hit-point. This integer

value is generated and managed by the algorithm. Objects with

less HP are considered unimportant and will be removed first if

eviction occurs. The maximum HP value need to be defined to

prevent objects from being too popular and will never be evicted

from the cache. The minimum HP value is 0.

Apart from objects storage, this algorithm needs to keep at

least 2 lists of unique host URL: today’s host list and yesterday’s

host list. The size of the list is very small compare to objects list

because many objects share the same host URL. These lists take

part in determining the HP of the objects. The lists are

maintained on daily basis.

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 3 -

Compared with LRU algorithm, our algorithm requires more

space since ours has to store lists of unique hosts and for each

object in the objects list, our algorithm has more properties.

3.2 Cache insertion policy

When new object wants to be entered the cache, the following

algorithm (Figure 1.) is applied.

The last condition in flowchart is the important point of this

algorithm. This means objects are given more hit-point if they

are related to previous browsing history. The second condition

from the last is for collecting users’ history for use later. If object

entering the cache is not new object (cache hit occurs), the hit

object will be placed at the end of the list and its HP will increase

by 1.At 24 hours interval, today’s host list will be copied to

previous day’s host list. Then today’s host list will be emptied. It

is also possible to have more than one list of previous host URL.

 LRU insertion policy is quite different from ours since we

have more properties (HP and host URL) and a host list to

maintain. Also normal LRU based algorithm will insert new

object at the front of the list while remove the last object in the

list (oldest object), our algorithm puts new object at the back of

the list instead. The reason is because our algorithm eviction

process is quite different in the eviction process of LRU.

3.3 Cache eviction policy

Once the cache is full and new object need to be put in,

eviction process will be called. The process works as followed.

1. Sort object list from high HP to low HP, If HP is the same

newer object will be placed in front of older object.

2. Remove objects from the cache, starting from the end of the list

(the less HP end) until X% of cache space is available.

3. Reduce HP of all objects in the list by 1.

The eviction process is explained with an example shown in

Figure 2. Assume that

- There are 12 objects in our cache, represent with rectangle.

- Object 1 is at the head of the list while object 12 is at the

end of the list.

- Object height refers to HP of that object. Objects 1, 2, and

10 have 3 HP. Objects 3, 7, 11, and 12 have 2 HP. Objects 4, 5, 6,

8, and 9 have 1 HP.

- Blue objects are sorted from previous eviction process.

- Yellow objects are new objects or objects that got “cache

hit” and got moved to the end of the list.

Figure 1. Cache insertion flowchart

Figure 2. Cache eviction algorithm example

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 4 -

In LRU, once a cache is full, insertion and eviction occurs

almost always together because LRU only evicts as less objects

as possible to maintain the cache to be near full all the time. This

can increase the hit chance because there are many objects in the

cache. However, in our algorithm we already determined that

objects that have less chance of a hit are at the end of the list.

Therefore, it is safe to remove many of them at once. Moreover,

with this HP system, new objects need to stay in the cache for

sometimes in order to gain more HP value. If eviction process

occurs often, all new objects are likely to be removed.

The final step of reducing all objects HP by 1 is crucial in this

algorithm. In case of a popular object with maximum HP

(assume that maximum HP is 5) that suddenly not get hit again.

This object will be reduced to 0 HP in 5 eviction processes.

Object that has 0 HP is guaranteed to be removed from the cache

because new object is starting with 1 HP.

Our algorithm has some configurable parameters which can be

adjusted.

- Maximum HP – high maximum HP results in a longer stay

of the object cache (if it can manage to reach that HP). In a

data set that popularity of objects is changing regularly,

maximum HP should be set to a low value.

- X% of eviction – higher X value means longer time before

cache need to perform eviction process again. However,

higher X has higher risk of losing popular objects.

- Number of previous host list – in this experiment we used

only 1 list which is yesterday’s list. However, it is also

possible to keep record of several lists such as weekly list or

monthly list and award objects that share host URL

accordingly.

4. Experiment

To evaluate our algorithm, first we collected raw web usage

data from 4 volunteers from different occupations which are

entrepreneur engineer programmer and student. All of the

volunteers use internet regularly both for work and personal life.

Data collection lasted from 3-9 days, depend on the usage of

each volunteer. There are 2 main reasons we decided to collect

data by our own, instead of using existing trace data (raw web

usage data) that available in the internet. The first reason is that

our algorithm requires host data. Most trace data that are

available for download does not provide this property. The

second reason is that most trace data are very old and possibly

out dated. For example, the latest client-sided trace data from

The Internet Traffic Archive [14], is collected in 1996 or the

latest client-sided trace data from web-caching.com [15] is dated

back in 1998. The WWW is changing all the time especially the

trend of social networking website such as Facebook. In our trace

data, Facebook appears very often as both page hit and as web

hub (users use this website as a start point to link to other

website).

Data collection was performed by installing Mozilla Firefox

and Mozilla Firefox plugin on client machines. Special

configurations of Mozilla Firefox are needed to be adjusted.

Most cache functions of web browser were disabled in order for

plugin to collect accurate browsing data. Volunteers can use

Firefox as normal web browser while add-on collects browsing

data in the background. There are many drawbacks in this

method. 1) Browsing data are highly confidential data. We have

transformed all raw data into numerical number with irreversible

method to keep privacy level as high as possible. 2) Volunteers

were forced to use Mozilla Firefox. The reason we choose this

browser in our research is from Firefox rich add-on functionality.

3) Since all cache functions were disabled during the data

collecting period, browsing speed was reduced due to no cache.

4) Unlike other data gathering methods such as performing a task

or answering questionnaires, data collection lasts for several days.

The task is a burden for volunteers.

HTTP data was collected in XML format. One HTTP request

contains many information about data and transaction. One

request is for one object which means if web page contains 20

pictures and 1 html file, there will be 21 requests for that page.

Example of HTTP request can be seen in Figure 3.

There were total of 780 megabytes of raw log data with more

than 234,425 HTTP requests. We compressed the data into

numerical number so that it is not irreversible and easier to

compute in the simulation. The example of compressed data for

one transaction is “1 3510 47551 0 0 0 221 3502 375

316894181”.

 We tested our algorithm and other 3 algorithms which are

LRU, SIZE, and HYBRID. LRU is the baseline of recency-based

algorithm. SIZE algorithm emphasizes on size of the object,

while HYBRID is a mixed strategy between recency, frequency,

and size. The parameters of our algorithm were X=50, maximum

HP is 5 and we use 1 host list which is yesterday’s list. We run

all algorithm on different cache storage size, range from 4KB to

8MB. The result is shown in Figure 4. X axis refers to hit-rate. Y

axis refers to cache storage size. Hit-rate translates directly to the

performance of the cache algorithms, which means the higher the

better.

5. Evaluation and Discussion

Our cache replacement algorithm performed better than

baseline algorithm LRU at various cache sizes which are from

4KB up to 1MB. From 1MB both algorithms performances start

to converge and at 2MB performances of both algorithms are

converted into same value. Our algorithm also outperformed Size

and Hybrid at all cache storage size.

The reason our algorithm performs better than LRU at lower

cache size is because popular objects did not get called fast

Figure 3. HTTP Request

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 5 -

enough before it got evicted from LRU cache. On the other hand,

our strategy can give more priority to popular objects by learning

from the past (via previous day host list). However, when the

cache size is big enough, the performances of both algorithms are

the same. The reason that guarantees our algorithm not to be

worse than LRU in performance is because we incorporate LRU

into our strategy.

 Comparison of our algorithm against LRU is as follows.

Advantages

- Our algorithm performs better at low storage space

- Once cache is full LRU will perform cache eviction process

all the time while our strategy performs once in a while. If

counting overhead for files I/O, even total files transfer is

the same, our algorithm will create less overhead.

Disadvantages

- Our algorithm is more complex in both structure and

calculation. Space overhead of our algorithm is for storing

host property and HP property for every object in cache list,

plus space for storing unique host list. CPU overhead is for

calculation of HP value and sorting list when eviction

occurs.

Our algorithm can be fit perfectly for web browsers on

smartphones. Since EDGE and 3G, browsing internet via mobile

devices is very common. Our algorithm is very suitable for low-

end smartphones where memory is very limited. For example,

one low-end Android based smartphone Sumsung Galaxy Ace

contains 158MB of RAM. RAM on smartphones is shared by its

operating system, web browser, and other always-on application

such as 3G or GPS making RAM very precious resource. In this

case, by giving away only 1MB of RAM for web caching, 24%

of objects will receive cache hit. Moreover, smartphone market

now is very competitive about CPU speed while memory is

mostly neglected, which can compensate our CPU overhead well.

6. Conclusion

In this research, we have proposed a web cache replacement

policy based on recency-based algorithm and users’ web usage

data. Our algorithm can perform significantly better than

baseline LRU algorithm in low cache storage environment and

perform the same as LRU at higher cache storage environment.

Our algorithm also generates less files I/O overhead at the cost

of higher complexity and structure overhead.

We believe that this technique is suitable for web caching on

mobile devices especially on low-end smartphones where RAM

is severely limit but CPU power is sufficient.

References

1. [PODLIPNIG, 2003] Podlipnig, S., Bӧszӧrmenyi, L., A

Survey of Web Cache Replacement Strategies, ACM

Computing Surveys, Vol.35, No.4, December 2003, pp.374-

398.

2. [MOOKERJEE, 2002] Mookerjee, V.S., Tan, Y., Analysis

of a Least Recently Used Cache Management Policy for

Web Browsers, Operations Research, Linthicum 50(2),

2002, pp.345-357.

3. [WILLIAMS, 1996] Williams, S., Abrams, M., Standridge,

C.R., Abdulla, G., and Fox, E.A., Removal policies in

network caches for World-Wide Web documents. In

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

LRU 0.020439 0.026451 0.032683 0.035288 0.042927 0.056235 0.10181 0.156571 0.284496 0.386062 0.451966 0.49874

Size 0.040627 0.042554 0.045569 0.050719 0.062174 0.090098 0.12817 0.182625 0.237294 0.286209 0.334805 0.384319

Hybrid 0.028524 0.034402 0.041233 0.047239 0.061752 0.087964 0.12058 0.15733 0.155428 0.171366 0.196936 0.230567

New 0.047178 0.051532 0.064681 0.078362 0.09216 0.127827 0.175494 0.240927 0.335258 0.38482 0.449184 0.494973

0

0.1

0.2

0.3

0.4

0.5

0.6

H
it

 R
a

ti
o

Figure 4. Hit Ratio vs. Cache Size of various cache algorithm

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 6 -

proceedings of ACM SIGCOMM, ACM Press, 1996, pp.

293-305.

4. [WONG, 2006] Wong, K.Y., Web Cache Replacement

Policies: A Pragmatic Approach, IEEE Network, 2006, pp.

28-34.

5. [LUTONEN, 1994] Luotonen, A., Altis, K., World-Wide

Web Proxies, Computer Networks. And ISDN System,

Volume 27, Issue 2, 1994, pp. 147-154.

6. [Romano, 2008] Romano, S., ElAarag, A quantitative study

of recency and frequency based web cache replacement

strategies, In proceedings of the 11th communications and

networking simulation symposium, ACM New York, 2008.

7. [TIRDAD, 2009] Tirdad, K., Pakzad, F., Abhari, A., Cache

replacement solutions by evolutionary computing technique,

In proceedings of the 2009 Spring Simulation

Multiconference, Society for Computer Simulation

International, 2009.

8. [Ali, 2009] Ali, W., Shamsuddin, S.M., Intelligent Client-

Side Web Caching Scheme Based on Least Recently Used

Algorithm and Neuro-Fuzzy System, In Proceedings of the

6th International Symposium on Neural Networks:

Advances in Neural Networks - Part II, Springer-Verlag

Berlin Heidelberg, 2009.

9. [Torkzaban, 2009] Torkzabah, V., Rahmani, S., SCRAME:

Selection of Cache Replacement Algorithm based on Multi

Expert, In proceedings of the 11th International Conference

on Information Integration and Web-based Applications &

Services, ACM New York, 2009.

10. [Geetha, 2009] Geetha, K., Gounden, N.A., Monikandan, S.,

SEMALRU: An Implementation of modified web cache

replacement algorithm, World Congress on Nature &

Biologically Inspired Computing, 2009.

11. [SRIVASTAVA, 2000] Srivastava, J., Cooley, R.,

Deshpande M., Tan, P., Web Usage Mining: Discovery and

Applications of Usage Patterns from Web Data. ACM

SIGKDD Explorations Newsletter, Volume 1, Issue 2,

January, 2000.

12. [Spiliopoulou, 2000] Spiliopoulou, M., Web usage mining

for Web site evaluation. Communications of the ACM,

Volume 43 Issue 8, 2000.

13. [Zhou, 2005] Zhou, B., Hui, S.C., Fong, A.C.M.,

Discovering and Visualizing Temporal-Based Web Access

Behavior. In proceedings of the Web Inteligence 2005,

IEEE Computer Society Washington, 2005.

14. http://ita.ee.lbl.gov/

15. http://www.web-caching.com

