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This paper investigates how the Infinite Relational Model (IRM) [Kemp 2006], a novel unsupervised machine learning 
method, is effectively applied to loosely-structured datasets consisting of concepts and features for the purpose of mapping 
Culturally Specific Concepts (CSCs) in a multi-cultural context. The aim of this investigation is two-fold: i) to identify an 
effective strategy of applying the IRM for the purpose of CSC-mapping; and ii) to investigate possibilities of applying the 
IRM for efficiently constructing feature-based ontologies that are multi-culturally interoperable. Accordingly, three strategies 
are tested in our experiments: 1) applying the IRM directly to two CSC-feature matrices, respectively representing the 
educational domain knowledge in Japan and Denmark for first categorizing them into categorical classes that are to be 
subsequently compared and aligned; 2) applying the IRM directly to a matrix where the two CSC-feature matrices 
respectively representing the Danish- and Japanese educational domain knowledge are merged; and 3) applying the Bayesian 
Model of Generalization (BMG) [Tenenbaum 2001] to directly compute similarity relations between CSCs in the two 
cultures at hand, thereafter to apply the IRM for clustering CSCs in the respective cultures into categorical classes. The 
results indicate that the third strategy seems to be the most effective approach for not only clustering CSCs into more specific 
and appropriate categorical classes but also for capturing complex relationships between each categorical classes existing in 
the two cultures.      

 

1. Introduction 
The recent internet revolution with its fast-paced globalization 

has brought about new possibilities for people located thousands 
of miles apart to real-time communicate with each other.  
Although we mostly use English as a common communication 
code, misunderstandings are almost unavoidable in contemporary 
cross-cultural communications. This implies that multilinguality 
is inherently challenged to effectively support human perception 
of concepts existing in diverse socio-cultural communities. 
Within the ontology research domain, there are several large-
scale frameworks that link multi-cultural information in a 
complex manner. [Cimiano, 2011] compares these multilingual 
ontology frameworks such as the KYOTO project [Vossen, 
2008] and the MONNET project [Declerck, 2010] based on a 
number of dimensions used in categorizing different types of 
ontology localization projects [Espinoza, 2009]. These 
dimensions are: international (standardized) vs. culturally 
influenced domains; functional vs. documental localization; and 
interoperable vs. independent ontology [Cimiano, 2011].  

In [Glückstad, 2012-a], [Glückstad, 2012-b], potentially 
applicable feature-based similarity measures that can be used for 
mapping independent ontologies in a culturally influenced 
domain in a functional manner are compared based on qualitative 
analyses. These analyses identified that the Bayesian Model of 
Generalization (BMG) [Tenenbaum 2001] is the most intuitive 
and effective measure of mapping CSCs existing in two cultures. 
The application of the BMG requires highly appropriate datasets 
consisting of CSCs and their definitional features. In [Glückstad, 

2012-a], an empirical study was performed with datasets 
obtained from a semi-automatic feature-based ontology 
construction method known as Terminological Ontology (TO) 
proposed by [Madsen 2004]. The results from that study 
indicated that particularly strict rules for constructing TOs may 
risk causing the elimination of important features. It means that 
the original TO-approach may require a more flexible taxonomic 
organization of feature structures.  

Inspired by the previous works, we here investigate how the 
Infinite Relational Model (IRM) [Kemp 2006], a novel 
unsupervised machine learning method, is combined with the 
BMG for efficiently mapping CSCs and is applied for 
constructing more flexible feature structures of taxonomies. Both 
the IRM and the BMG applied in this work are originally 
proposed by cognitive scientists [Kemp, 2006] and [Tenenbaum, 
2001]. While [Kemp, 2006] emphasizes that the IRM considers 
the semantic knowledge problem from the viewpoint of: how 
representations of semantic knowledge are acquired, 
[Tenenbaum, 2001] addresses three crucial questions of learning 
raised by [Chomsky, 1986]: 1) What constitutes the learner’s 
knowledge?; 2) How does the learner use that knowledge to 
decide how to generalize; and 3) How can the learner acquire 
that knowledge from the example encountered? Thus, the 
combination of the IRM and the BMG is potentially an 
interesting attempt from a philosophical point of view. However, 
in this paper we focus on how the IRM and the BMG are 
efficiently combined from a practical point of view, and the 
philosophical and pragmatic discussions are dealt with in a 
subsequent research report [Glückstad, 2012-c]. 
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Tversky’s set-theoretic model [Tversky, 1977] on which the 
BMG is based, is widely known in the area of ontology matching 
such as shown in [Huang, 2010] and [de Souza, 2004]. The IRM 
has been applied to diverse research domains among others in the 
area of neuroimaging where functional groups and their 
interactions are extracted by the IRM [Mørup, 2010] and in the 
area of collaborative filtering and topic modeling [Xu, 2006], 
[Hansen, 2011]. 

In the next section, the experimental settings and strategies 
employed in this work are explained in detail, followed by brief 
reviews of the BMG and the IRM in Section 3. Section 4 
analyzes the results obtained from the three experimental 
strategies. In Section 5, we discuss some critical issues and future 
perspectives, followed by conclusions in Section 6.     

2. Experimental settings 

2.1 Data source 
In this work, we first create two datasets, respectively 

representing the Danish educational domain knowledge and the 
Japanese educational domain knowledge. The datasets consists of 
educational terms and their definitional features that are 
manually extracted from text corpora. The Japanese corpora used 
for this experiment are: 1) “Outline of the Japanese School 
System” published by the Center for Research on International 
Cooperation in Educational Development (CRICED), University 
of Tsukuba, Japan; and 2) “Higher Education in Japan” published 
by the Japanese Ministry of Education, Culture, Sports, Science 
and Technology (MEXT). The Danish documents are 
downloaded from the Euridice web-site published by the 
Education, Audiovisual and Culture Executive Agency under the 
EU commission. These corpora are written in English and hence 
it is feasible to identify original expressions of educational terms 
in the respective languages from existing parallel- or content 
aligned corpora. This enables us to eventually achieve translation 
between Japanese CSCs and Danish CSCs through the English 
term mapping. 

The CSCs and their definitions, all written in English, are 
manually extracted from the text corpora, e.g. the Danish CSC 
“municipal school (DA: folkeskole)” and its definition “a 
comprehensive school covering both primary and lower 
secondary education, i.e. one year of pre-school class, the first 
(grade 1 to 6) and second (grade 7-9/10) stage basic education, 
or in other words it caters for the 6-16/17-year-olds”. From this 
definition, we create a feature list consisting of “comprehensive 
school” “primary and lower secondary education” “basic 
education” “targeted for 6-16/17 years old”. This definition also 
implies that “municipal school” is categorized into three sub-
CSCs “preschool class”, “first stage” and “second stage”, 
respectively having their features “one year preschool education” 
“1-6 grades” and “7-9/10 grades”. These sub-CSCs are supposed 
to inherit features defined in the subordinate CSC, in this case 
“municipal school”. In this way, 59 Danish CSCs and 54 
Japanese CSCs and their features all written in English are listed 
up. In addition, some features are manually standardized, e.g. a 
feature “continuing education for adults” in Denmark is 
standardized with a feature “opportunities for life-long learning” 
in Japan. Finally, the following operations are manually 

implemented: a) If a feature value in one country is completely 
included in a feature value in the other country (e.g. the feature 
“6-12 y.o.” in Japan is completely included in the feature “6-17 
y.o.” in Denmark), a CSC possessing the feature that includes the 
other feature (a CSC possessing “6-17 y.o.” should also possess 
“6-12 y.o.”; and b) If two features from the respective countries 
are partly overlapping (e.g. “13-15 y.o.” in Japan and “14-17 
y.o.” in Denmark are partly overlapping), a dummy feature 
referring to the exact overlapping range (e.g. “14-15 y.o.”) is 
created. In this example, a Japanese CSC possessing “13-15 y.o.” 
should also possess the dummy feature “14-15 y.o.”. In the same 
way, a Danish CSC possessing “14-17 y.o.” should also possess 
the dummy feature “14-15 y.o.”. 

Accordingly, in total 229 features are registered in the two 
matrices, respectively representing the Danish- and Japanese 
educational systems. In each matrix, if a feature is possessed by a 
CSC, the numeric value “1” appears, otherwise “0” is assigned. 
In these matrices, the Danish- and Japanese CSCs are 
respectively denoted as Di and Jj and feature IDs are assigned as 
fk. Both the Danish- and Japanese CSCs and their features are 
alphabetically registered. Hence, it requires systematic 
taxonomic organization of CSCs for achieving effective CSC-
mapping between the two cultures. 

2.2 Experimental strategies 
[Kemp 2006] emphasizes that the IRM considers the semantic 

knowledge problem from the viewpoint of: how representations 
of semantic knowledge are acquired, instead of starting from the 
viewpoint of how these systems can be represented. This has 
inspired us to investigate how semantic knowledge is acquired 
from the limited domain text corpora and how this can 
effectively be represented for the purpose of cross-cultural 
knowledge transfer. Accordingly, three strategies are tested in the 
experiments: 1) applying the IRM directly to the respective CSC-
feature matrices for first categorizing them into categorical 
classes that are to be subsequently compared and aligned; 2) 
applying the IRM directly to a matrix where the two CSC-feature 
matrices, respectively representing the Danish- and Japanese 
educational domain knowledge are merged; and 3) applying the 
BMG to directly compute similarity relations between CSCs in 
the two cultures, and thereafter to apply the IRM for clustering 
CSCs in the respective cultures into categorical classes. This 
implies that, in case of strategy 1) and 2), the IRM clusters CSCs 
based on CSC-feature links, whereas, in case of strategy 3), the 
clustering is based on CSC-CSC links between Danish and 
Japanese CSCs which are identified by the BMG. These three 
strategies are compared in Section 4 and 5.  

3. Methods 

3.1 The Bayesian Model of Generalization (BMG) 
The BMG [Tenenbaum 2001] is a cognitive model, which 

uniquely unifies the two following classically opposing 
approaches to similarity and generalization: Tversky’s set 
theoretic model of similarity [Tversky 1977] and Shepard´s 
continuous metric space model of similarity and generalization 
[Shepard 1987]. The philosophical background of the BMG 
described in [Tenenbaum 2001] is reviewed in [Glückstad, 2012-
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c]. A key point in the BMG is to compute the conditional 
probability that y falls under C (Consequential Region) given the 
observation of the example x based on the following formula: 

 (1) 

The consequential region C in our work indicates the 
categorical region where a new object y belongs. In equation (1), 
a hypothesized subset h is defined as the region where a concept 
belongs to h, if and only if, it possesses feature k [Tenenbaum 
2001]. It means, for our work, that y is considered as a newly 
encountered object existing in a Source Culture (SC) domain 
when y is introduced to a Target Culture (TC) audience and the 
TC audience compares this new object y with an observed data x 
which is part of his/her prior knowledge (referent dataset). 

Another unique point of the BMG is that P(h, x) = P(x|h)P(h) 
in equation (1), represents the weight assigned to the 
consequential subset h in terms of the example x. This can be 
achieved by specifically assigning the weight P(h, x) based on 
the strong sampling scheme defined in [Tenenbaum 2001] as 
follows: 

 (2) 

Here, |h| indicates the size of the region h [Tenenbaum 2001]. In 
our work, the number of objects possessing the kth feature in the 
referent dataset is considered as the size of the region h. 
[Tenenbaum 2001] explains that the prior P(h) is not constrained 
in their analysis so that it can accommodate arbitrary flexibility 
across contexts. Hence in this work, P(h) = 1. 

3.2 The Infinite Relational Model (IRM) 
According to [Kemp, 2006], a key feature of the IRM is to 

automatically choose an appropriate number of clusters using a 
prior that favors small numbers of clusters, but has access to a 
countably infinite collection of clusters. In [Kemp 2006], the 
observed data are considered as m relations involving n types. 
For the experimental strategies 1), 2) and 3) in our work, we 
apply the simplest model: dealing with two types with a single 
two-place relation R: T1 x T2 → {0, 1}. More specifically, in 
strategies 1) and 2) T1 corresponds to either Danish and/or 
Japanese CSCs and T2 corresponds to definitional features, while 
in strategy 3), T1 and T2 respectively corresponds to Danish CSCs 
and Japanese CSCs.  

The principle of generating clusters in the IRM, according to 
[Kemp, 2006], is based on a distribution over partitions induced 
by a so-called Chinese Restaurant Process (CRP) [Pitman, 2002]. 
The CRP starts a partition process with a single cluster 
containing a single object. The ith object has possibilities to 
belong to either of the following: 

 
• A new cluster with probability: γ / (i-1+ γ) 
• An existing cluster with probability: na / (i-1+ γ) 

 
Here, na is the number of objects already assigned to cluster a, 
and γ is a parameter [Kemp, 2006]. The CRP continues until all 
the objects belong to clusters. Hence, the distribution over 

clusters for object i conditioned on the cluster assignments of 
objects 1, …, i-1 is defined as [Kemp, 2006]: 

 (3) 

[Kemp, 2006] explains that the distribution on z induced by the 
CRP is exchangeable: the order in which objects are assigned to 
clusters can be permuted without changing the probability of the 
resulting partition. P(z) can therefore be computed by choosing 
an arbitrary ordering and multiplying conditional probabilities. 
Since new objects can always be assigned to new clusters, the 
IRM effectively has access to a countably infinite collection of 
clusters. 

From the clusters generated by the CRP, relations are 
generated based on the following generative model: 

 
• As described above, for the cluster assignment of objects 

z | γ ~ CRP (γ)    
• For link probabilities between clusters 

η (a, b) | β ~ Beta (β, β)   
• For links between objects 

R (i, j) | z,η ~ Bernoulli (η (zi, zj))  
 
In the above generative model, we set parameters β=1, and   
γ=log (Ji) where Ji is the number of concepts in each mode.  

In here, relationships are assumed to be conditionally 
independent given cluster assignments [Kemp, 2006]. The 
eventual purpose of the generative model is to identify a cluster z 
that maximizes P(z|R). Based on the generative model defined 
above, relations from clusters are generated by: 

 (4) 

where m+
ab refers to the total number of links between 

categorical classes a and b; and m-
ab refers to the total number of 

non-links between categorical classes a and b. The conjugate 
prior ηab is in the aforementioned generative model defined as:  
η(a, b) | β ~ Beta(β, β). Accordingly, the conjugate prior ηab is 
integrated out in the following: 

 (5) 

From formulae (3) and (5), the IRM identifies z that 
maximizes: P (z|R) ∝ P (R|z) P(z). According to [Kemp, 2006], 
the expected value of ηab given z is: 

 (6) 

The procedure for the inference is further described in 
[Mørup 2010]. The solutions displayed in the following are based 
on the sample with highest likelihood. 

4. Results 
Based on the BMG and the IRM reviewed above, empirical 

studies are performed based on the experimental strategies 
described in Section 2. 



The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012 

- 4 - 

4.1 Experimental strategy 1 
The first experimental strategy is in a way the most natural 

approach to judge how an ontology is learned from data 
consisting of CSCs and features that respectively represent 
specific domain knowledge existing in two cultures. Thus the 
IRM is directly applied to the CSC-feature matrices, respectively 
created from the aforementioned English corpora describing the 
Danish- and the Japanese educational systems. Accordingly, 59 
Danish CSCs and 229 features are simultaneously clustered into 
5 and 10 categorical classes in Figure 1-a. In the same way, 54 
Japanese CSCs and 229 features are respectively clustered into 6 
and 11 categorical classes in Figure 1-b. In both Figure 1-a and 
1-b, the unsorted graph shows the relations between the CSCs 
and their features. It means that each dot represents a relation that 

a CSC possesses a specific feature in the matrix. The upper right 
graphs in the figures show the graph sorted according to 
extracted assignments of clusters computed by the IRM 
algorithm. The bottom-left graphs show the distribution of CSCs 
over the extracted categorical classes, and the bottom-right 
graphs show the distribution of features over the extracted 
clusters. The bottom-center graphs correspond to the graphs 
sorted according to extracted assignments of clusters, which 
indicates the density of relationships between a Danish (or a 
Japanese) categorical class and a feature cluster. In Figure 2, all 
members (i.e. specific CSCs) for each categorical class are 
respectively listed for the Danish and Japanese educational 
domain knowledge. 

Figure 1: IRM clustering based on the Strategy 1 (Left: Danish CSCs * features / Right: Japanese CSCs * features) 

 
Figure 2: CSC members that constitute each categorical class based on Strategy 1 (Left: Danish / Right: Japanese) 

 
For convenience, each categorical class has been named in 

Figure 2 within a parenthesis based on members that constitute 
the specific categorical class in question. As Figure 2 shows, 
some categorical classes (e.g. Danish classes 3, 4 and 5; and 

Japanese classes 1, 3, 5, and 6) are successfully formed only with 
CSCs that are related to the respective categorical classes such as 
“upper secondary”, “open education”, “secondary”, and “lower 
secondary”. However, the rest of the categorical classes are 
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partly formed with CSCs that represent different categorical 
classes. For example, the Danish categorical class 1 consists of 
CSCs that are supposed to belong to “pre primary” and “adult 
education” and Japanese categorical class 2 consists of CSCs that 
are supposed to belong to “tertiary” and “primary”. When 
observing Figure 1-a, the successful Danish categorical class 3 
“upper secondary” has a very dense relationship with feature 
cluster 7 consisting of “16-18 years old” and “post compulsory 
education” and with feature cluster 10 consisting of “upper 
secondary education” and “vocational perspectives”. In the same 
way; the Danish categorical class 5 representing degree programs 
targeted for adults has a dense relationship with feature cluster 6 
consisting of features: “opportunities for lifelong learning”, “part 
time”, “possibilities for combining education and work”, 
“occupational function”, and “open education”. Figure 1-b shows 
another notable point that the Japanese categorical classes 1 and 
3 both have a dense relationship with feature cluster 9 consisting 
of “non-compulsory educational school” and “post-compulsory 
education”. However, the Japanese categorical class 1 - “upper 
secondary” - has also a strong relationship with feature cluster 8 
consisting of “16-18 years old”. Also the Japanese categorical 
class 3 - “alternative post compulsory” - has another relationship 
with feature cluster 10 consisting of “education + practical 
training”. This indirectly indicates that the Japanese categorical 
classes 1 and 3 both belong to a super-ordinate category 

(although it does not exist in the dataset) referring to “post-
compulsory education”. This kind of information could be useful 
for representing knowledge in a taxonomical structure, e.g. for 
constructing Terminological Ontologies [Madsen 2004].  

The results of experimental strategy 1 indicate that if few 
decisive features exist for representing a categorical class, the 
IRM effectively sorts CSCs that relate to these decisive features. 
However, when relationships between categorical classes and 
feature clusters are weak, there is a tendency that CSCs that 
belongs to different categorical classes start to be mixed into one 
class.  

4.2 Experimental strategy 2 
The second strategy is to apply the IRM directly to the matrix 

where the two CSC-feature matrices respectively representing 
the Danish- and Japanese educational domain knowledge are 
merged. The aim of this second strategy is to assess whether the 
IRM can directly be used for mapping CSCs existing in two 
cultures. Accordingly, in total 113 CSCs (59 Danish and 54 
Japanese) and 229 features are respectively clustered into 8 
categorical classes and 16 feature clusters as shown in Figure 3. 
Figure 4 lists 8 categorical classes and their cluster members. 

 
 

Figure 3: IRM clustering based on Strategy 2 (Danish + Japanese CSCs * features) 

 
The results in Figure 4 show that 3 out of 8 categorical classes 

are mono-cultural categories. More specifically, class 4 solely 
consists of Danish CSCs referring to the Danish adult education; 
and the classes 7 and 8 solely consist of Japanese CSCs 
respectively referring to the Japanese alternative post-
compulsory education and graduate school. It means that the 
purpose of mapping CSCs existing in the two cultures has not 
been achieved in terms of these three categorical classes. On the 

other hand, one interesting finding is that the Danish mono-
cultural categorical class 4 and the Japanese mono-cultural 
categorical class 7 share feature cluster 15 consisting of 
“opportunities for lifelong learning” according to the η-sorted 
graph in Figure 3. Although concepts existing in different 
cultures have not been grouped in the same class, the IRM 
enables us to identify a relationship indicating which categorical 
class share which feature cluster in the η-sorted graph. This type 
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of information is highly useful for constructing feature-based 
ontologies as well as for CSC-mappings. Finally, the rest of the 
five bi-cultural categorical classes result in rather ambiguous 
categories. For example, categorical class 2 that is the group of 
upper secondary CSCs, consists of the most abstract Danish 
upper secondary CSCs and all concrete Japanese upper 
secondary CSCs. On the contrary, categorical class 3 that is also 
the group of upper secondary CSCs representing concrete Danish 

upper secondary education for both general and vocational 
purposes are grouped together with the Japanese college of 
technologies (JP: Koto Senmon Gakko) which provides 5 years of 
practical and vocational education consisting of 3 years upper 
secondary and 2 years post-secondary education. Accordingly, 
the mapping results obtained from the second strategy seems not 
to be optimal. 

 

Figure 4: CSC members that constitute each categorical class based on Strategy 2 (Danish + Japanese concepts) 
 

Figure 5: IRM clustering based on the Strategy 3 (BGM + IRM) 
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Figure 6: CSC members that constitute each categorical class based on Strategy 3 (Left: Danish / Right: Japanese) 
 

4.3 Experimental strategy 3 
The third strategy is to apply the BMG to directly compute 

similarity relations between CSCs existing in the two cultures, 
and thereafter to apply the IRM in order to cluster CSCs in the 
respective countries into categorical classes. This enables us not 
only to observe the inter-relations of categorical classes existing 
in the two cultures, but also to instantly scrutinize more specific 
similarity relations between each category member (i.e. CSCs) 
existing in the two cultures. Accordingly, 59 Danish CSCs and 
54 Japanese CSCs are simultaneously clustered into 11 and 9 
categorical classes, respectively shown in Figure 5. In this figure, 
the unsorted graph shows existing links between the Danish 
CSCs and the Japanese CSCs identified by the computation of 
the BMG. It means that each dot represents a link established 
between a Danish CSC and a Japanese CSC, when they share at 
least one common feature. The upper right graph in Figure 5 
shows the graph sorted according to extracted assignments of 
categorical classes computed by the IRM algorithm. The bottom 
left- and right graphs show the distribution of concepts over the 
extracted categorical classes, respectively for the Danish- and 
Japanese CSCs. The bottom center graph corresponds to the 
graph sorted according to extracted assignments of categorical 
classes, which indicates the density of relationships between a 
Danish categorical class and a Japanese categorical class. 

The results in Figure 6 show that both the Danish- and the 
Japanese CSCs are clustered into a more fine-grained level 
compared with the results obtained from the first- and second 
experimental strategies. Almost all members in each categorical 
class in Figure 6 are grouped together with other members that 

are supposed to belong to the same categorical class. For 
example, some CSCs such as the Japanese “J3: college of 
technology (JP: koto-senmon-gakko)” and the Danish “D36: 
municipal school (DK: folkeskole)” are CSCs that are difficult to 
be categorized in a multi-cultural context. While, in the first- and 
second experimental strategies, these CSCs have been included 
in a more ambiguous larger categorical class where CSCs that are 
supposed to belong to different categorical classes have been 
grouped together, J3 and D36 are respectively grouped into a 
more specific and independent categorical class, i.e. the Japanese 
categorical class 6 and the Danish categorical class 4, in this third 
strategy. One of the noteworthy points in the third strategy is that, 
when observing the η-sorted graph in Figure 5, it is possible to 
study more complex relationships of categorical classes in a 
cross-cultural context. For instance, the Japanese categorical 
class 6 where “J3: college of technology” belongs, has a strong 
relationship with the Danish categorical class 2 “upper 
secondary” class, but also has a little weaker relationship with 
both the Danish categorical classes 7 and 8, which respectively 
represent “vocational academy” and “vocational college” 
categories providing a 2 years post-secondary degree in Denmark. 
The observation of the η-sorted graph in Figure 5 further provide 
a clear picture of how each country-specific categorical class is 
related to categorical classes existing in another country in a very 
complex and comprehensible manner. This kind of overview of 
how categorical classes in different cultures are inter-related is 
highly useful and valuable not only for mapping CSCs but also 
for constructing ontologies in a multi-cultural context. 
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Figure 7: BMG similarity relations between the category members of Japanese categorical class 6 and all the Danish concepts 
 

5. Discussions and future perspectives 
The experimental results presented in this work indicate that 

the third strategy seems to be the most effective approach for 
clustering CSCs into more specific and appropriate categorical 
classes. In addition, this strategy enables us to capture complex 
relationships existing between each categorical class in the two 
cultures. However, the drawback of the third strategy is that it is 
not able to assess how each categorical class is related with 
features. On the other hand, the first- and second strategies 
enable us to analyze how features and each categorical class are 
related to each other. The shortcoming of these strategies is that 
the clustered categorical classes are rather ambiguous and some 
categorical classes are mixed with members that are supposed to 
belong to other categorical classes.  

Another advantage of the third strategy is that the direct 
application of the BMG enables us to analyze further specific 
similarity relations between category members of the respective 
categorical classes existing in the two cultures. Figure 7 
illustrates how the category members of the Japanese categorical 
class 6 in Figure 6 are related with the category members of the 
Danish categorical classes 2, 7 and 8. As discussed in the 
previous section, the η-sorted graph in Figure 5 shows that the 
Japanese categorical class 6 has the strongest relationship with 
the Danish categorical class 2 and slightly weaker relationship 
with the Danish categorical classes 7 and 8. Figure 7 explains 
these relationships between the classes by showing that all the 
category members of the Danish categorical class 2 share at least 
one feature with all the category members of the Japanese 
categorical class 6, while only 75% of the category members of 
the Danish categorical classes 7 and 8, respectively, share at least 

one feature with 75% of the category members of the Japanese 
categorical class 6. On the other hand, when observing individual 
relationships between category members between the Japanese- 
and the Danish categorical classes, similarity relationships are 
not necessarily strong in most of the combinations. Here, the 
selection of feature-based similarity measures plays in to the 
considerations.  

In this work, we have selected the BMG as the most suitable 
feature-based similarity measure. However, for implementing the 
IRM based on the third experimental strategy, it is possible to 
apply other feature-based similarity measures, such as the 
Jaccard similarity coefficient [Tan, 2005], [Jaccard, 1901] and 
Tversky´s set-theoretic model [Tversky, 1977], which compute 
similarities based on common features and distinctive features 
possessed by the two CSCs in question. Comparative qualitative 
analyses of applying different feature-based similarities to CSC- 
mapping are further discussed in [Glückstad, 2012-a] and 
[Glückstad, 2012-b], and our arguments of applying the BMG 
from both cognitive- and pragmatic point of views are discussed 
in details in another session of this conference [Glückstad, 2012-
c]. Thus, in this work, we focus on how to interpret the results 
obtained from the BMG shown in Figure 7. As explained in 
Section 2, equation (1) computes the conditional probability that 
a new observed object y falls under a consequential region C 
given the learner’s prior knowledge that have already been 
observed as x. It means that in relation to Figure 7, a scenario 
could be that a Japanese person who has prior knowledge of the 
Japanese educational system is learning the Danish educational 
system by comparing similarities of individual Danish 
educational CSCs. Thus, all the knowledge about Japanese CSCs 
are considered as x and the individual Danish CSC as y in 

Cluster 2 
Cluster 7 Cluster 8 
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equations (1) and (2) in Section 2. In other words, it can be 
interpreted that all definitional features possessed by a Japanese 
CSC are considered as prior knowledge of the Japanese learner 
and can act as noise (or cultural bias) if a feature is not possessed 
by a Danish concept taken in comparison. In addition, the 
uniqueness of the BMG is to reflect the importance of features 
for the similarity computation by considering features that are 
possessed by many concepts as less important and features that 
are possessed by fewer concepts as more important and decisive. 
In case of “J5: college of technology – industrial course (JP: 
Koto-senmon-gakko, sangyo-koosu)”, Danish CSCs - “D31: HTX 
(Danish upper education that is specialized in technical and 
natural science)”, “D55: vocational college (Danish educational 
institution that offer vocationally-oriented upper- and 2 year 
post-secondary education)”, and “D8: technical college (Danish 
vocational college specialized in technical and natural science)” 
– they are identified as the most similar concepts. In the 
respective cases, one or few decisive features such as 
“specialized in technical and natural science”, “offering 2 year 
post-secondary degree” strongly influence the similarity 
computation and differentiate the confidence levels of similarity 
from other concepts. Another interesting pattern of applying the 
BMG as shown in Figure 7 is related to “J34: post-compulsory 
educational institution (JP: Gimu-kyoiku-go-no-kyoiku-kikan)”. 
The J34-CSC is a very abstract concept only possessing two 
features. It means that no other distinctive features influence as 
noise in the similarity computation. Accordingly, the result 
indicates that the Japanese CSC, J34, likely covers all category 
members of the Danish categorical class 2 as the most similar 
concepts identified in the Danish culture. In this way, the 
combination of the BMG and the IRM could possibly be used for 
first capturing the abstract relationship between categorical 
classes and next for further analyze the individual similarity 
relationship between CSCs in order to achieve more fine-grained 
CSC-mappings. 

A critical point in this work is that the datasets have been 
created in a way where the authors systematically but manually 
extracted CSCs and definitional features from the applied text 
corpora. Although the procedure has been systematized, it is 
hence not possible to perfectly eliminate human subjectivities. 
Accordingly, one of our future challenges is to further investigate 
what types of datasets are suitable for CSC-mapping applying the 
BMG+IRM solution. One possibility would be to apply this 
solution to a more complex dataset obtained from other major 
multilingual ontology projects such as the Monnet project 
[Declerck, 2010]. Another possibility is to apply the BMG+IRM 
solution to datasets consisting of CSCs and features that are 
automatically extracted from text corpora [Lassen, 2012]. This 
may eventually lead to not only an automated CSC-mapping but 
also to an automatic ontology learning applying the IRM.     

Another aim of this work is, as briefly mentioned in the 
previous paragraph, to investigate possibilities of applying the 
IRM for efficiently constructing feature-based ontologies that are 
multi-culturally interoperable. From this viewpoint, the method 
of constructing Terminological Ontologies (TOs) in [Madsen, 
2004] that are in accordance with [ISO 2000] could be highly 
suitable for the IRM application. The uniqueness of the TO 
method is its feature specifications and subdivision criteria 

[Madsen 2004], [Madsen 2005]. While the use of feature 
specifications is subject to principles and constraints, the TO-
approach allows for so-called poly-hierarchy structures. It means 
that one CSC may be related to two or more super-ordinate CSCs. 
Accordingly, the IRM could potentially be used as an effective 
pre-processing step of constructing TOs that are interoperable in 
a multi-cultural context. Mainly for two reasons: 1) the IRM may 
indicate which features influence the formation of categorical 
classes as the results from the first- and second experimental 
strategies in this work have shown; and 2) the IRM based on the 
third experimental strategy may cluster CSCs into more specific 
and appropriate categorical classes that may capture complex 
relationships between each categorical classes existing in the two 
cultures. Hence, we need a solution to achieve these strategies at 
one time. Here, it is important to remind that the design we have 
chosen for this work is the simplest design of the IRM dealing 
with two types with a single two-place relation R: T1 x T2 → {0, 
1}, and as described in [Kemp, 2006], the IRM design can be a 
more complex model clustering three relations simultaneously. 
Accordingly, our obvious future challenge would be to 
investigate what kind of complex model is applicable for 
constructing ontologies in collaboration with the automatic TO 
construction project [Madsen, 2010].      

6. Conclusions 
In this work, we investigated the application of the IRM 

[Kemp 2006] to the loosely-structured datasets consisting of 
CSCs and features representing two cultures for the purpose of 
mapping CSCs in a multi-cultural context. The results from the 
three applied experimental strategies indicate that the 
combination of the BMG and the IRM seems to be the most 
effective approach for not only clustering CSCs into more 
specific and appropriate categorical classes but also for capturing 
complex relationships between each categorical classes existing 
in the two cultures. In addition, the direct application of the 
BMG to the datasets enables us to effectively analyze further 
specific similarity relations between category members existing 
in the two cultures. However, in order to conclude on this, it is 
necessary to investigate the performance of the BMG+IRM 
solution with different types of datasets that are purely 
objectively generated. Another important finding is the potential 
application of the IRM for the automatic construction of feature-
based ontologies among others, TOs [Madsen 2004]. The results 
obtained from the first- and second experimental strategies 
indicate that this may potentially be achieved by designing a 
more complex IRM. Although further research is required, the 
application of the IRM to the multi-cultural ontologies seems to 
provide a diverse potential in this research domain. 
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