
The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

4M1-IOS-3c-2

FiVaTech2: A Supervised Approach to Role Differentiation

for Web Data Extraction From Template Pages

Chia-Hui Chang∗1 Chih-Hao Chang∗1 Mohammed Kayed∗2

∗1 National Central University,
Jhongli, Taiwan

∗2 Math. Department, Faculty of Science
Beni-Suef University, Egypt

A huge amount of consolidated information on the World Wide Web are embedded in HTML pages as they
are generated dynamically from databases through some search form. This paper proposes a page-level web data
extraction system FiVaTech2 that extracts schema and templates from these template-based web pages automat-
ically. The proposed system, FiVaTech2, is an extension to our previously page-level web data extraction system
FiVaTech. FiVaTech2 uses a machine learning (ML) based method which compares HTML tag pairs to estimate
how likely they present in the web pages. We use one of the ML techniques called J48 decision tree classifier and
also use image comparison to assist templates detection. Each HTML tag in the web page has several features
that can be divided into the three types: visual information, DOM tree information, and HTML tag contents. Our
experiments show an encouraging result for the test pages when combinations of the three types of tag features are
used. Also, our experiments show that FiVaTech2 performs better and has higher efficiency than FiVaTech.

1. Introduction

The explosive growth and the popularity of the World

Wide Web make it the repository of information for all

people around the world. Although this growing of the

World Wide Web, it doesn’t guarantee effectively accessing

to those information. Most of the web sites don’t provide

the API to be mashed up or the RSS to be subscribed,

so users of these sites have to do a lot of browsing or

copy&paste in order to get the required information. This

cost of browsing is becoming noticeable with the Deep Web

(deepnet or invisible web), which contains magnitudes more

and valuable information than the surface Web. Web pages

in the Deep Web are generated dynamically from databases

and often present in some template showing consistent view

of their search result. Since these web pages are not meant

to be processed by programs, developing a wrapper is useful

for value-added services and other information integration

systems.

There are extensive studies of information extraction (IE)

from World Wide Web. Chang et al. [2] surveyed these

works and classified them based on the automation degree

into four different classes: manually constructed [9], [10],

supervised [11], [12], [13], [14], semisupervised [1], [15], and

unsupervised systems [3],[16], [17], [18], [19]. Manually con-

structed systems require programmers to deduct the extrac-

tion rules but are costly and difficult to scale up. Super-

vised systems require less user skills to label sample pages

for these systems to induce the extraction rules. Semi-

supervised Systems do not require users to label any sample

pages but require post-processing from the users to choose

the pattern and indicate the data to be extracted, while

unsupervised systems automatically generate the wrappers

Contact: Chia-Hui Chang, National Central University, No.

300, Jhongda Rd., Jhongli City, Taiwan, Tel: +886-

3-4227151 ext 35302, Fax: +886-3-4222681, Email:
chia@csie.ncu.edu.tw

without any user interventions and receive a lot of atten-

tions.

Most technologies for unsupervised web data extraction

analyze HTML source code or DOM (Document Object

Model) tree of the input to find common template and their

schema. For example, FiVaTech [3] is an unsupervised web

data extraction system, which uses tree template to model

the generation of dynamic web pages. In order to deduce

the schema and templates for each individual Deep Web

site, Fivatech applies tree matching for peer node recogni-

tion, tree alignment for missing and optional nodes recogni-

tion, and mining techniques for repetitive pattern detection.

Since commercial web pages uses a lot decorating HTML

tags or CSS for presentation, many studies have exploited

visual information for web data extraction. Example of such

studies are ViNTs [4], MSE [5], ViPER [6], [7], and ViDE

[8]. In ViNTs and MSE, visual information is used to cap-

ture the content lines. ViPER uses visual information to

identify potential repetitive patterns and ViDE obtain the

visual block tree to extract data records and data items

from the web pages.

While

unsupervised information extraction use annotation-free in-

put pages for wrapper induction, we can still make use of

trained models for differentiating tag roles for unsupervised

wrapper induction. In this paper, we improve FiVaTech

by developing a new version called FiVaTech2 which ex-

ploits visual information and the subtree attributes of the

DOM tree for peer node recognition. The visual informa-

tion (including IsLeaf, Left, Top, Height, Width, Parent,

Page, Value, Children, ChildHeight, and ClassAttr, etc.)

is obtained from the web browser (Microsoft Internet Ex-

plorer). The training data are prepared from eight web

sites (ACM, Amazon, Bing, Columbia university library,

DBLP, Delicious, eBay, Google, IEEE explorer, UCLA li-

brary, American Airline, Altavista, Buy.com, CNet down-

load, Netflix) to build a classifier for peer node recognition.

1

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

That is, instead of simple tree matching algorithm between

two subtrees in FiVaTech [3], FiVaTech2 uses decision tree

classifier to identify peer nodes between two DOM trees.

The rest of the paper is organized as follows. Section 2

reviews the related works. Section 3 introduces our earlier

approach FiVaTech. Section 4 provides the detail of our

new approach FiVaTech2. Section 5 describes the experi-

ments. Section 6 concludes our work.

2. Related works

In this section, we describe current work related to ours

including the approaches that use DOM tree information to

construct the wrapper, the approaches that use visual infor-

mation to help extracting data records, and the approaches

that are page-level extraction systems.

2.1 Approaches using DOM tree information
Many approaches on Web information extraction oper-

ate on DOM tree structure. MDR [18] analyzes the child

nodes under each parent node to find generalized nodes and

data regions by enumerating possible combinations of child

nodes. It uses string edit distance to compute the similarity

between tag sequences of two generalized nodes. However,

the goal of MDR is to identify data records and does not

align the data items in each data record. Meanwhile, due to

missing and noise information, it may find wrong combina-

tion of subtrees, i.e. incorrectly boundary of a data record.

DEPTA [19] deals with the problem by using visual gaps

between data records. Besides, it incorporates partial tree

alignment technique to align data fields of multiple data

records. NET [21] extends DEPTA by supporting nested

records extraction. ViPER [6] uses primitive tandem re-

peats and visual context information for record segmenta-

tion to enhances the generalized nodes concept. This pro-

vides a better subtree comparing method than MDR that

allows consecutive data records with various lengths. DeLa

[20] builds suffix trees to detect C-Repeated patterns in web

page string and its algorithm is able to extract the nested

objects. FiVaTech [3] also relies on tree matching score

for subtree comparison, however, the bigger goal is to find

the schema and template for the whole page rather than

record-level schema.

2.2 Approaches using visual information
Some approaches improve and extend these works by us-

ing the visual information to extract web data. ViNTs [4]

and MSE [5] use visual content features on a browser to

identify candidate content line. ViPER [6] uses visual in-

formation for global multiple sequence alignment. Although

visual information is used, these approaches still use HTML

tag structure as primary information for similarity calcula-

tion. The major players that rely on visual information

would be ViDE [8] and WDRE [7]. ViDE obtains the vi-

sual presentation and transform it into a visual block tree.

Its main visual features include position features, layout

features, appearance features, and content features which

can be obtained from web page layout (location, size, and

font). In general these approaches use the tree edit distance

Figure 1: An example HTML page

to find the similarity of the HTML tag tree nodes as well

as visual information cue.

2.3 Page-level Extraction Systems
EXLAG [16] and RoadRunner [17] are page-level unsu-

pervised web data extraction systems. RoadRunner ex-

tracts data by comparing a pair of web pages to induce

the template. It includes three steps: A (Align), CM

(Collapse under Mismatch), and E (Extract). It provides

backtracking mechanism if optional or iterated tags are

found. EXLAG extracts data by analyzing equivalence

classes. dTokens (Differentiating Tokens) are aggregated

in equivalence classes if they have the same occurrence fre-

quency on all input web pages. Large and frequently equiv-

alence classes (LFEQs) are extracted for template genera-

tion. While EXALG and RoadRunner operates on HTML

tags, FivaTech manipulate DOM trees in order to better

differentiate roles of subtrees with the same tag names.

3. FiVaTech

In this section, we briefly describe FiVaTech, a page-

level Web data extraction system from template pages. Be-

fore we start, we shall introduce the page generation model

which encode data instances with tree template to form a

page.

3.1 Problem definitions
All data instances of a web site shall conform to a com-

mon schema which can be defined as follows.

Definition 1: (Structured data) A data schema can

be of the following types:

• A basic type β represents a string of tokens which are

basic units of text.

2

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

• If τ1,τ2,. . . ,τk are types, then their order list

¡τ1,τ2,. . . ,τk¿ also forms a type τ . We say the type τ

is constructed from the types τ1,τ2,. . . ,τk using a type

constructor of order k. An instance of the k-order τ

is of the form ¡x1, x2, ..., xk¿ where x1, x2, ..., xk are in-

stances of types τ1,τ2,. . . ,τk respectively. The type τ

is called

1. a tuple, denoted by ¡k¿τ , if the cardinality (the

number of instances) is 1 for every instantiation.

2. an option, denoted by (k)?τ , if the cardinality is

either 0 or 1 for every instantiation.

3. a set, denoted by {k}τ , if the cardinality is

greater than 1 for some instantiation.

4. a disjunction, denoted by (τ1|τ2|...|τk)τ , if all

τi(i = 1, ..., k) are options and the cardinality

sum of the k options: τ1 to τk equal to 1 for

every instantiation of τ .

The process of embedding a data instance into the tem-

plate can be viewed as an encoding process, while wrapper

induction is an reverse engineering which decodes from the

pages to its template and data schema. Thus, the problem

of wrapper induction can be formulated as follows.

Definition 2: (Wrapper Induction) Let λ(TΩ, D) de-

notes the generation model of some Web pages at time t,

where TΩ denotes the templates for schema Ω and D de-

notes its extracted data. The problem of page-level wrapper

verification is to decide whether a new Web page P at time

t’ has been changed from its generation model λ(TΩ, D).

We call this problem a record-level wrapper verification if

Ω is simply a set of k -tuples.

In this paper, we assume that all of the peer nodes must

be in the same DOM tree level which is not true for all Web

sites.

we adopt FivaTech, a page-level, unsupervised wrapper

induction approach which merges the input DOM trees into

a pattern tree. A pattern tree removes duplicate occurring

patterns of set types and contains one representation for

each data types (tuple, option, disjunction, etc). As an

example, Figure 2 shows a pattern tree which contains the

merged DOM tree and detected schema, where we have a

set, two tuples, two options and five basics.

3.2 FiVaTech Tree Merging
There are two main phases in FiVaTech. The first phase

is merging input DOM trees to construct the fixed/variant

tree, and the second phase is detecting the schema and the

template of a Web site based on the constructed pattern

tree.

FiVaTech merges similar subtrees on the same level from

the inputted DOM trees. The system considered only sub-

trees on the same level to simplify the merging problem.

The tree merging algorithm includes four steps: peer node

recognition, matrix alignment, pattern mining, and op-

tional node detection.

1. In the peer node recognition step, a modified tree edit

distance is designed to calculate a matching score for

Figure 2: A merged pattern tree and the corresponding

schema representation for Figure 1

two nodes with the same tag∗1 name such that set data

with various occurrences still have high similarity.

2. In the second step, the child nodes will fill up a matrix

such that all peer child nodes (similar subtrees mea-

sured in the previous step) will be denoted with the

same symbol. The matrix alignment algorithm then

traverses the matrix to obtain an aligned peer matrix.

3. In pattern mining step, the algorithm discovers repet-

itive patterns and merge them to deduce the aligned

list.

4. Finally, in the last step, optional node merging, the

algorithm detects optional nodes based on the occur-

rence vectors. If a set of adjacent nodes have the same

occurrence vectors, they will be grouped as optional.

If a set of adjacent optional nodes have complement

occurrence vectors, they will be grouped as disjunc-

tion.

3.3 Schema Detection
In this phase, FiVaTech detects the structure of the web

site which includes identifying the schema and defining the

template for each type constructor of this schema. By the

end of the previous phase, basic type, set type and optional

type are already identified. The remaining task for schema

detection in this phase is to recognize tuple type as well as

the order of the set type and the optional data.

FiVaTech traverses the fixed-variant pattern tree from

the root downward and marks nodes as k-order (if the node

is already marked as some data type) or k-tuple. For nodes

with only one child and not marked as set or optional types,

there is no need to mark it as 1-tuple (otherwise, there will

be too many 1-tuples in the schema), thus the system sim-

ply traverses down the path to discover other type nodes.

For nodes with more than one branch (child), the system

will mark them as k-order if k children contain a data type.

∗1 Two nodes with different names are inherently not peer.

3

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

Figure 3: FiVaTech2 Architecture

Figure 4: A Web page from DBLP and its DOM tree.

Finally, the schema tree S can then be obtained by exclud-

ing all of the tag nodes that have no types.

Note that FiVaTech uses tree edit distance to measure

the similarity among nodes with the same tag in the same

level of the inputted Web pages, which exploits only struc-

tural information to measure the similarity. Since visual

information is recommended and important for similarity

measure, we propose a classifier-based approach for peer

node recognition.

4. FiVaTech2

In this section, we present the details of our approach

which is an improvement to FiVaTech. As shown in Figure

3, our approach includes three modifications. Given some

DOM trees as input, we filter template blocks by image

comparrison. Third, peer node recognition is enhanced by

a J48 classifier during tree merging.

Figure 5: The filteringTemplateBlocks algorithm

4.1 Filtering Out Template Blocks in the In-
puted DOM Trees

The Deep Web usually contains two types of blocks in

the generated Web pages: template data blocks and data

rich blocks. Template data blocks are the frames/sections

of the Web pages that contain template data such as adver-

tisements, navigational panels and so on. Data rich blocks

are the frames/sections of the Web pages that contain rele-

vant data of interest to the user. Although template blocks

can be detected by FiVaTech through recursive comparison

of peer nodes from root, the process could be quite time

consuming. To improve the efficiency, we propose an image-

based step to filter out template blocks before applying the

peer nodes recognition step for tree merging.

Our algorithm filteringTemplateBlocks has two main as-

sumptions. First, template blocks for various pages of a

Web site are displayed with the same content. Not only

does the renderred images look the same, the tags that cor-

respond to such template blocks also co-located in the same

path of the DOM trees. Second, the area for a data rich

block often occupies the biggest area in the whole Web page.

Based on the first assumption, we can remove template sub-

trees in the preprocessing step. However, subtrees with the

same images in a data rich block are usually not template.

As shown in Figure 5, the algorithm recursively traverses

one of the inputted DOM trees from the root downward

and checks for the existence of some child node c with per-

centageArea(c) > 40% where percentageArea(c) is defined

as the percentage of the image area corresponds to node c

to the whole area of the displayed page):

percentageArea(c) =
nodeArea(c)

nodeArea(< Body >)
%.

If all child nodes have percentageArea less than 40%, the

algorithm stops (line 1) or the algorithm identifies the child

node with the biggest percentageArea value (line 2). The

algorithm then keeps the biggest node and all remaining

children nodes that have no identical subtrees in the other

DOM trees (line 3-6).

As an example, we apply our algorithm with the DOM

tree in Figure 4 to describe how it proceeds. The algo-

rithm starts at the root node (¡body¿) and identifies the

fifth ¡DIV¿ node with 58% percentageArea to be the biggest

child. The algorithm then seaches for each node the iden-

tical subtrees in other inputted DOM trees and remove the

subtrees if every DOM tree has identical image. For the

4

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

biggest node, the algorithm recursively calls itself to pro-

cess next level and find the only child node at this level

(¡DIV¿ at level 2) as the biggest node and so on. The algo-

rithm then stops at the node ¡TBODY¿ at level 4 because

all of its children have percentageArea values less than 40%.

4.2 Peer Nodes Recognition
In this section, we describe the revised algorithm to iden-

tify peer nodes (similar subtrees) in the inputted DOM

trees. The main idea is to use the decision tree algorithm

to judge whether two input subtrees are peer nodes or not.

During the peer node recognition step, we apply decision

tree algorithm to compare two nodes (subtrees) at the same

level in the input DOM trees.

In this paper, we use the J48 algorithm which is available

with the Weka package. In order to train the J48 classifier

model, we exploit both structural and visual features of

Web pages (DOM trees). The visual features is obtained

from Web browsers (e.g., Microsoft Internet Explorer) by

calling the APIs of the browser. Each node of the DOM

tree has a corresponding rectangular image displayed on

the browser. The two-dimensional coordination (left,top)

is used to represent the location of each image. In addition

to the (left,top) point, we also have the width and height

of the image and the following features.

• PageID: an unique identifier denoting where the sub-

tree originates.

• Parent: the parent node in the DOM tree.

• TextContent: the text contents within the subtree.

• NoChildren: number of child nodes in the subtree.

• ChildHeight: The depth of the subtree of the current

node.

• LeafNode: whether the node has children or not

(Boolean feature).

• ClassAttr: The class name of the HTML tag.

• Path: The numbered path of the DOM tree node. The

partial path includes the tag name and its parent tag

name. Each tag name is followed by a number repre-

senting iting location in the parent node (from left to

right starting at 1). For example, the path of the node

¡Table¿ in Figure 4 has path ¡DIV5¿¡DIV1¿.

• Token: the number of tokens in leaf text content.

• Digit: the number of digits in leaf text content.

• Letter: the number of letters in leaf text content.

• UpperCase: the number of capitalized letter in leaf

text content.

• LowerCases: the number of lower cas

The features used to train the J48 decision tree with

two nodes node1 and node2 are shown in Table 1. The

appropriate values of the attributes are based on our em-

pirical results. For example, the value “Both” of the at-

tribute Node1IsLeaf means that both node1 and node2 are

leaves. As another example, the value “Sim” of the at-

tribute SameChildren means that the percentage of the size

difference of the two nodes is less than 10%. Also, the

value “Empty” means that the contents of the two nodes

are empty. Our experiments show that these values are

useful and give good results.

5. Experiments

We conduct two experiments to measure the performance

of the J48 algorithm on peer node recognition and overall

performance of FiVaTech2 for wrapper induction, respec-

tively. We collect HTML pages from 15 web sites for the

first experiment on peer node recognition and another 15

websites for wrapper induction.

5.1 Performance of Peer Node Recognition
5.1.1 Learning Curve with Various Training Data

Size

First, we show the performance of peer node recognition

when various number of training sites are used. We fix 5

web sites as the testing set and measure the performance of

the models trained from n (1..10) web sites. For each n, we

prepare ten data sets Sin (i=1..10), each with n web sites

chosen in a round robin way. We then conduct ten rounds

to build prediction classifiers for each data set and average

the accuracy of each model to measure the performance of

n training sites. That is,

An =

∑10

i=1
Acc(Sin)

10
.

For example, to calculate the accuracy A2 for two train-

ing web sites taken from the 10 training sites {s1, ..., s10},
we calculate the accuracy Acc(Si2) for each one of the 10

sets {s1, s2}, {s2, s3}, . . . , {s10, s1}, and then calculate the

average as A2. As shown in Figure 6, the accuracy on

the 10 training sites increases from 0.89 to 0.98 with more

training data (a typical learning curve for machine learning

algorithm). However, the accuracy on the 5 testing sites

achieves at 0.87 with 6 training sites and improves no more

thereafter.

We can see a similar performance in terms of training

node pairs. The given 10 training sites with 0.87 mil-

lion node pairs (instances) are used to sample n exam-

ples as training set for various n from 20..100, 200..1000,

2000..10000, 20000..100000, 200000..800000. Again, we

evaluate the accuracy for each n by averaging the accuracy

of ten rounds. Figure 7 shows the accuracy of the train-

ing set (0.87 million instances) and testing set (0.4 million

instances) at various number of training instances. The

accuracy achieves 0.87 when 3000 node pairs are used as

training set and remains around this value.

5

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

Table 1: Features for Peer Node Recognition

Attributes Values Description

Visual Information:

SameLeft Yes,No Whether the “Left” of the two images correspond to the two nodes are
equal (Yes) or not (No).

SameTop Yes,No Whether the “Top” of the two images corresponds to the two nodes are
equal (Yes) or not (No).

SameHeight Yes,No Whether the heights of the two images correspond to the two nodes are
equal (Yes) or not (No).

SameWidth Yes,No Whether the widths of the two images correspond to the two nodes are
equal (Yes) or not (No).

DOM Tree Information:

Node1IsLeaf Yes,No,Both Whether Node1 is a leaf (Yes) or not (No). “Both” means both Node1

and Node2 are leaves.

Node2IsLeaf Yes,No,Both Whether Node2 is a leaf (Yes) or not (No). “Both” means both Node1

and Node2 are leaves.

SameParent Yes,No Whether the two nodes have the same parent tags (Yes) or not (No).

SamePage Yes,No Whether the two nodes in the same page (Yes) or not (No).

SameChildren Yes,No,Sim Whether the total number of nodes in the two subtrees are equal (Yes).

If the difference is less than 10%, we assign a value of “Sim”, otherwise
we assign a value of “No”.

SameChildHeight Yes,No Whether the two nodes have the same depth (Yes) or not (No).

SameClassAttr Yes,No,Empty Whether the two tag nodes have the same class attributes (Yes) or not

(No). “Empty” value is used when any one has no class attributes.

SamePath Yes,No Whether the two nodes have the same paths (Yes) or not (No).

TreeEditDistance 1%, 10%, 20%, ...,
100%

The discretized percentage of tree edit distance of two nodes

HTML Tag Contents:

SameContent DateTimeFormat,

EmailFor-

mat, UrlFormat,

IPFormat,

CurrencyFor-

mat, DecimalFor-

mat, PhoneFor-

mat, StringEdit-

Distance

(1%, 10%, 20%,

. . . ,100%), No

When two nodes have the same content category of “DateTimeFormat”,

“EmailFormat”, “UrlFormat”, “IPFormat”, “CurrencyFormat”, “Deci-

malFormat” “PhoneFormat”, the corresponding category value is used.

If the content category is string type, the percentage of the string edit

distance are discretized. If the content categories are not the same, we
assign a value of “No”.

DiffTokens Yes, No, Empty,

1%, 10%, 20%,
. . . , 100%

Whether the two nodes have the same number of Tokens (Yes) or dis-

cretized percentage of different token.

DiffDigits Yes, No, Empty,

1%, 10%, 20%,
. . . , 100%

Whether the two nodes have the same contents (Yes) or not (No).

“Empty” means both are empty. The others are the percentage of dif-
ferent digit character number of two nodes.

DiffLetters Yes, No,

Empty, 1%, 10%,
20%,. . . ,100%

Whether the two nodes have the same contents (Yes) or not (No).

“Empty” means both are empty. The others are the percentage of dif-
ferent letter character number of two nodes.

DiffUpperCase Yes, No, Empty,

1%, 10%, 20%,
. . . , 100%

Whether the two nodes have the same contents (Yes) or not (No).

“Empty” means both are empty. The others are the percentage of dif-
ferent upper case character number of two nodes.

DiffLowerCase Yes, No, Empty,

1%, 10%, 20%,
. . . , 100%

Whether the two nodes have the same contents (Yes) or not (No).

“Empty” means both are empty. The others are the percentage of dif-
ferent lower case character number of two nodes.

6

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

Figure 6: The accuracy of different number of training sites

Figure 7: The accuracy of various training node pairs

Figure 8: Accuracy at different DOM tree levels

Figure 9: The accuracy of different data regions

5.1.2 Performance for Various Depth and Data

Regions

We further divide the test examples into subsets to see if

the performance is influenced by various levels in the DOM

tree or whether the node pairs come from the same page

or whether they come from data rich regions. First, we

examine the accuracy of peer node recognition from various

levels. Figure 8 shows the accuracy of the J48 classification

at each level in the DOM tree (normalized between level 0

to 100%). As shown in the figure, the first and deepest level

have higher accuracy than the middle level.

Next, we also examine the accuracy of peer recognition

on node pairs from different pages as well as node pairs from

data-rich regions. As shown in Figure 9, the performance

of peer node recognition is higher if the node pairs come

the same pages or data-rich area.

• Single Page: exclude node pairs which come from dif-

ferent pages

• Diff Pages: exclude node pairs which come from the

same page

• Data-rich Area: exclude node pairs which are in tem-

plate area

5.2 Performance on Wrapper Induction
In the second experiment, we compare the schema gen-

erated by FiVaTech2 and that generated by FiVaTech. We

use additional 15 web sites in this experiment (different

than the 15 sites used in the above experiment) and deduce

their schema manually. As shown in Table 2, we calculate

the number of basic type (denoted by Bm), optional type

(denoted by Om), and set type (denoted by Sm), then we

verify the number of basic items extracted correctly (de-

noted by C1 and C2) from the two systems. We use re-

call=Ec/Nt and precision=Ec/Et to measure the perfor-

mance of these systems, where Ec is the total number of

correctly extracted basic items, Et is the total number of

basic items which are extracted by the system, and Nt is

the total number of basic items to be extracted. Out of

83 manually extracted basic types, FiVaTech2 correctly ex-

tracts 78 and FiVaTech correctly extracts 79. However Fi-

VaTech detects 116 basic items (i.e., FiVaTech extracts 33

incorrect basic items), while FiVaTech2 only detects 89 ba-

sic items (i.e., FiVaTech2 extracts 6 incorrect basic items).

The experimental results show that FiVaTech2 has better

precision but worse recall than FiVaTech.

In terms of efficiency, we measure the average time spent

on wrapper induction by FiVaTech2 and FiVaTech on the

15 web sites. As shown in Table 3, on a computer Intel

Core 2 Duo T7300 with 4GB ram, the time consumed by

FiVaTech2 is about 20 seconds on average (shown in the

second column) and the time consumed by FiVaTech is 38

seconds on average (shown in the third column). The last

column shows the percentage of the time taken by FiVaT-

ech2 to the time taken by FiVaTech. As shown in the table,

FiVaTech2 is more efficient than FiVaTech (less than half

of the time taken by FiVaTech).

7

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

Table 2: Performance of comparison between FiVaTech2 and FiVaTech

Bm Om Sm A1 O1 S1 C1 A2 O2 S2 C2

Site Manual FiVaTech2 FiVaTech

GenSource 7 0 2 8 0 2 6 6 0 1 6

NACM 8 1 1 9 4 1 8 13 0 2 8

NAMI 6 1 1 8 4 2 6 6 2 1 6

OneStop 5 1 1 10 6 1 5 28 0 0 5

ShelbyVille 3 1 1 3 1 1 3 3 0 1 3

Overture 6 0 1 6 0 2 6 6 0 2 6

Budget.state 8 1 1 8 4 2 8 15 2 2 8

Queensland 6 0 1 6 3 2 6 6 0 2 6

Wacotrib 4 1 1 5 2 1 4 4 2 1 4

Atmoz 7 1 3 7 5 5 7 6 1 3 6

Execgroup 4 0 1 3 1 2 3 4 0 3 4

Dog.com 4 0 1 4 0 1 4 5 0 2 4

Lgiftbazaar 3 0 1 3 0 1 3 3 0 1 3

TheGoodWeb 7 1 2 4 4 2 4 6 2 2 6

SEHSC 5 0 1 5 0 1 5 5 0 1 4

Total 83 8 19 89 34 26 78 116 9 20 79

Recall 93.97% 95.18%

Precision 87.64% 68.10%

Finally, we analyze the factors that affect the perfor-

mance of FiVaTech2. We divide the labeled instances

into three different groups including “Visual”, “Dom”,

and “Content” information. “Visual” information includes

the attributes “SameLeft”, “SameTop”, “SameHeight”,

and “SameWidth”; “Dom Tree” information includes the

attributes “Node1IsLeaf”, “Node2IsLeaf”, “SameParent”,

“SamePage”, “SameChildren”,

“SameChildHeight”, “SameClassAttr”, “SamePath”, and

“TreeEditDistance”; while “Content” information includes

“SameValue”, “DiffTokens”, “DiffDigits”, “DiffLetters”,

“DiffUpperCase”, and “DiffLowerCase”. We then compare

the extraction performance of data records using various

combinations. Table 4 shows the performance of FiVaT-

ech2 when various combinations of these three types of fea-

tures are used. We use recall=Ec/Nt and precision=Ec/Et

to measure the performance of our system, where Ec is the

total number of correctly extracted data records, Et is the

total number of records extracted, and Nt is the total num-

ber of data records contained in all web pages of a data

set. As shown in the table, we can observe that using of

DOM attributes give better results. Meanwhile, HTML tag

content has only values with the leaf nodes while all inter-

nal nodes have no contents. The visual information is not

sufficient for text node, so the F-measure is not the best.

The overall attributes have the best F-measure in the ex-

periment.

6. Conclusion and Future Works

In this paper, we propose a classifier based approach for

peer node recognition to extract template from the deep

web pages automatically. The J48 decision tree uses both

DOM tree information and text contents as well as visual

Table 3: A time-based comparison between FiVaTech2 and

FiVaTech
Time FiVaTech2 FiVaTech Ratio

GenSource 3 14 21.4%

NACM 9 15 60.0%

NAMI 13 42 30.9%

OneStop 3 35 8.6%

ShelbyVille 8 40 20.0%

Overture 1 9 11.1%

Budget.state 6 3 200.0%

Queensland 4 16 25.0%

Wacotrib 3 15 20.0%

Atmoz 17 60 28.3%

Execgroup 60 105 58.1%

Dog.com 2 7 28.6%

Lgiftbazaar 2 5 40.0%

TheGoodWeb 3 6 50.0%

SEHSC 130 160 81.3%

Average 20 38 45.6%

Table 4: Performance comparison of FiVaTech2 at different

types of features

Attributes Recall Precision F-measure

Visual 0.83 0.88 0.874

Dom 0.88 0.89 0.913

Content 0.83 0.81 0.826

Visual +Dom 0.90 0.91 0.951

Dom+Content 0.88 0.90 0.928

Visual+Content 0.84 0.88 0.897

All 0.89 0.90 0.962

8

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

information for training features. The visual information

improves the peer node recognition and helps detect tem-

plates as well as fixed blocks. We found that the training

size of 6 web sites can achieve 0.87 accuracy for peer node

recognition. The experiments provides the evidence that

such a classifier-based approach can be used for more accu-

rate and efficient data extraction. However, 0.87 accuracy

is not a satisfactory performance for peer node recognition.

More features or multiple classifiers might be an interesting

direction to explore.

References

[1] C.-H. Chang, C.-N. Hsu, S.-C.

Lui. “IEPAD:Information extraction based on pattern

discovery. WWW-10,pp.223-231, 2001

[2] C.-H. Chang, M. Kayed, M. R. Girgis, K. F.

Shaalan. “A Survey of Web Information Extraction

System. IEEE TKDE(SCI, EI),Vol. 18,No.10,pp.1411-

1428, 2006

[3] M. Kayed, C.-H. Chang. “FiVaTech: Page-Level Web

Data Extraction from Template Pages, IEEE TKDE,

vol. 22, no. 2, pp. 249-263, Feb. 2010.

[4] H. Zhao, W. Meng, Z. Wu, V. Raghavan, C. T. Yu.

“Fully automatic wrapper generation for search en-

gines. WWW 2005: 66-75

[5] H. Zhao, W. Meng and Z. Wu, V. Raghavan, C. Yu.

“Automatic Extraction of Dynamic Record Sections

From Search Engine Result Pages. VLDB, pp.989-

1000, 2006

[6] K. Simon, G. Lausen: “ViPER: augmenting automatic

information extraction with visual perceptions. CIKM

2005: 381-388

[7] W. Liu, X.-F. Meng, W.-Y. Meng. “Vision-Based Web

data records extraction. In: Proc. of the 9th SIGMOD

Int’l Workshop on Web and Databases (WebDB 2006).

Chicago: ACM Press, 2006.

[8] W. Liu, X.-F. Meng, W.-Y. Meng. “ViDE: A Vision-

based Approach for Deep Web Data Extraction. Trans-

actions on Knowledge and Data Engineering, IEEE,

2007

[9] J. Hammer, J. McHugh, and H. Garcia-Molina,

“Semistructured Data: The TSIMMIS Experi-

ence,” Proc. First East-European Symp. Advances in

Databases and iformation Systems (ADBIS), pp. 1-

8,1997.

[10] L. Liu, C. Pu, and W. Han. “XWRAP: an XML-

enabled wrapper construction system for Web informa-

tion sources,” in Data Engineering, 2000. Proceedings.

16th International Conference on,2000, pp. 611-621.

[11] D. Freitag. “Information Extraction from HTML: Ap-

plication of a General Learning Approach,” 1998.

[12] H. F. L. Alberto, R.-N. Berthier, and S. d. S. Altigran.

“DEByE - Date extraction by example,” Data Knowl.

Eng., vol. 40, pp. 121-154, 2002.

[13] N. Kushmerick. “Wrapper induction for information

extraction,” University of Washington, 1997, p. 246.

[14] ME. Califf, RJ. Mooney, ”Relational Learning of

Pattern-Match Rules for Information Extraction,”

University of Texas at Austin 1998.

[15] C.-H. Chang and S.-C Kuo, ”Olera: semisupervised

Web-data extraction with visual support,” Intelligent

Systems, vol. 19, pp. 56-64, 2004.

[16] A. Arasu and H. Garcia-Molina, ”Extracting struc-

tured data from Web pages,” in Proceedings of the

2003 ACM SIGMOD international conference on man-

agement of data San Diego, California: ACM,2003.

[17] V. Crescenzi, G. Mecca, P. Merialdo. ”RoadRunner:

Towards Automatic Data Extraction from Large Web

Sites,” in Proceedings of the 27th International Con-

ference on Very Large Data Bases: Morgan Kaufmann

Publishers Inc., 2001

[18] B. Liu, R. Grossman. Y. Zhai. “Mining data records

from Web pages.” KDD-03, 2003.

[19] Y. Zhai and B. Liu. “Web data extraction based on

partial tree alignment,” in Proceedings of the 14th

international conference on World Wide Web Chiba,

Japan: ACM, 2005.

[20] J. Wang, F. H. Lochovsky. “Data extraction and label

assignment for web databases. WWW 2003: 187-196

[21] B. Liu and Y. Zhai. “NET – A System for Extracting

Web Data from Flat and Nested Data Records.” WISE

Conference, 2005.

9

