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Many clustering methods have been proposed for analyzing the relations inside networks with a mixture of
assortative and disassortative structures. All these methods are based on the fact that the entire network is
observable. However, the entities in some real networks may be private, and thus, cannot be observed. We focus on
private peer-to-peer networks in which all vertices are independent and private, and each vertex only knows about
itself and its neighbors. We propose a privacy-preserving Gibbs sampling for clustering these types of private
networks and detecting their mixed structures without revealing any private information about any individual
entity. Moreover, the running cost of our method is related only to the number of clusters and the maximum
degree, but is nearly independent of the number of vertices in the entire network.

1. Introduction

Numerous methods have been recently proposed to solve

network-clustering problems. Some deal with the assorta-

tive mixing model, in which the vertices are divided into

groups such that the members of each group are mostly

connected to the other members of the same group (Fig-

ure 1-a). Inversely, in the so-called disassortative mixing

model, the vertices have most of their connections outside

their group (Figure 1-b). A combination of these two mod-

els in many applications is more meaningful than using just

one, i.e., the vertices generally have more connections inside

the group, while some vertices may also frequently linked

to the vertices in some correlated groups (Figure 1-c).

We consider the personal information protection issue in

social networks, e.g., each person contacts the others via

various means of communication, such as MSN, Yahoo Mes-

senger, mobile phones of different providers, and others.

Each of these organizations, such as Microsoft, Yahoo, and

mobile service providers, stores part of user’s data from the

entire network. Hence, some valuable information about

the entire network, such as the cluster structure, could not

be inferred. This motivated us to develop a new privacy-

preserving clustering to be conducted by the individual en-

tities in a network without the support of the organizations.

We formulate this type of network as follows.

1.1 Fully Distributed (Peer-to-peer) Private
Network Model (Figure 2)

1.1.1 Distributed Assumptions

One vertex one party: We take into consideration a

peer-to-peer network in which each party only contains a

single vertex. So, the network becomes an n-party system,

where n is the number of all vertices.

Local communication: Each vertex only contains knowl-

edge about itself and its neighbors. It does not even know

of the existence of parties other than its neighbors.

Fairness: Each vertex has the same status and performs

the same operations.
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Figure 1: Assortative mixing vs. Disassortative mixing.
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Figure 2: A Private Peer-to-peer Network.

Auxiliary server: An auxiliary server stores the interme-

diate and final results, and has a connection to each party.

1.1.2 Private Assumptions

Local knowledge: Each vertex only knows about itself

and the connections to its neighbors. In particular, it does

not even know: (i) the internal information of any other

vertex; (ii) the existence of any vertex that is not adjacent;

and (iii) the adjacency information about its neighbors.

Semi-honest: All the parties properly follow the protocol

except that they keeps all the intermediate record.

Non-collusion: The parties do not collude with each other

or reveal any information to each other.
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Table 1: Comparison of related work.

Secure Partition Network Problem

Method Manner Data Type

Kamp[4] - - ◦ Clustering

Jha[3] ◦ Horizon - K-means

Vaidya[9] ◦ Vertical - K-means

Lin[6] ◦ Horizon - EM-alg.

Hay[2] ◦ P2P ◦ Degree

Sakuma[8] ◦ P2P ◦ Ranking

This paper ◦ P2P ◦ Clustering
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θ|γ ∼ Dirichlet(γ)

zi|θ ∼ Multinomial(θ)

ηab|α, β ∼ Beta(α, β)

Aij |z, η ∼ Bernoulli(ηzizj )

Figure 3: Generative model of IRM.

2. Related Work

Kemp et al. [4] proposed a mixed network model with

assortative and disassortative structures, Infinite Relational

Model (IRM). A Gibbs sampling method was also proposed

to perform the clustering for this model. Many distributed

privacy-preserving data mining methods, such as private K-

means clustering [3, 9] and private EM algorithm [6], have

been proposed. Privacy-preserving data mining used in net-

work analysis has attracted a lot of attention recently [2, 8].

Nevertheless, secure clustering in peer-to-peer networks has

not yet received an adequate of attention (Table 1).

3. Preliminaries

An unweighted directed graph G(V,E), where V contains

n vertices, and E contains all edges. G can also be rep-

resented by an adjacency matrix A. See [11] for all the

notations. Suppose these n vertices fall into C clusters.

3.1 Infinite Relational Model (IRM)
The graphic model (Figure 3) of IRM illustrates the gen-

eration of a network, where γ, α, and β are the parameters.

The clustering can be done using Gibbs sampling.

Pr(znew
i = z|A, z−i) ∝ Pr(A|znew) Pr(znew

i = z|z−i), (1)

where

Pr(znew
i = z|z−i) =


nz − 1 + γ

n− 1 + C · γ (z = zi)

nz + γ

n− 1 + C · γ (z ̸= zi)
, (2)

Pr(A|znew) =
∏

a,b∈[C]

Beta(mnew
ab + α,Mnew

ab + β)

Beta(α, β)
. (3)

We need to compute (1) to sample zis repeatedly.

Table 2: Distributed Sampling Schema.

01 Initialization: The server chooses and publishes α, β, γ;

02 Accumulation stage (Section 4.1):

03 The server computes m and n with all parties;

04 Sampling stage (Section 4.2):

05 All parties sample and update their own zi in parallel;

06 If not convergent, goto 02.

In the end, given the final results m, M , and n, we can

recover θ and η, which express the network structure:

θa =
na

n
; ηab =

mab + α

mab + α+Mab + β
. (4)

3.2 Tools for Secure Computation
Paillier encryption [7] satisfies an additive homomor-

phism. Let pk and sk be the public key and the private

key. Let m be the plaintext, c be a random encryption of

m, and d be the decryption of c. We have

Epk(m1 +m2, r) ≡ Epk(m1, r1) · Epk(m2, r2), (5)

where r, r1, and r2 are random numbers.

A random share generation can be used to generate a pri-

vate number for each of two parties, such that their sum-

mation is equal to some secure value. Both numbers are

random so that in isolation they provide zero information

about that secure value. Goethals et al. [1] proposed a

two-party protocol for the random share generation of a

secure product, called SSP . By performing SSP , two ran-

dom numbers sa and sb are securely generated by Alice and

Bob, respectively, such that sa + sb = x · y, where x and y

are the private inputs of Alice and Bob, respectively.

4. Distributed Clustering

4.1 Distributed Accumulation Stage
We define the contribution of a single party i as a C-size

vector ν(i), whose ath element is ν
(i)
a =

{
1 (a = zi)

0 otherwise
.

So we have,

n =
∑
i

ν(i). (6)

We also define the contribution of a single edge (i, j) as

a C × C matrix µ(ij), whose (a, b) element is µ
(ij)
ab ={

1 (a = zi, b = zj)

0 otherwise
. So we have, µ(ij) = ν(i)ν(j)T, i.e.,

µ
(ij)
ab = ν

(i)
a ν

(j)
b , and then,

m =
∑

Aij=1

µ(ij) =
∑

Aij=1

ν(i)ν(j)T. (7)

If each party i computes a matrix µ(ij) with each of its

children, j, and sends all these ν(i) and µ(ij)s to the server,

the server can compute n (6), m (7), and M (Notice that

Mab = nanb −mab).
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Table 3: Privacy Schema.

Private Publish

Party i Server All

Input pa(i), ch(i) n C, γ, α, β

Intermediate zi m, M , n -

Output zi m, M , n θ, η

4.2 Distributed Sampling Stage
The goal of this stage is to compute the probabilities (1):

Pr(znew
i = z|A, z−i), for all z ∈ [C], and then sample a

znew
i for party i from this distribution.

4.2.1 Computation of (2)

Given n, Pr(znew
i = z|z−i) in (2) is a function of z and

zi, i.e,

g(z, zi) ∈ Ω1 := {g(a, b)|a, b ∈ [C]}. (8)

4.2.2 Computation of (3)

We set:

hab :=
Beta(mnew

ab + α,Mnew
ab + β)

Beta(α, β)
. (9)

Pr(A|znew) =
∏

a,b∈[C]

hab. (10)

In each step, the cluster label zi is replaced with znew
i (3.1).

For all a, b ∈ [C], the range of hab is {hab(κ)|a, b ∈ [C], κ ∈
{0, 1, · · · ,K}}, which contains at most (K+1)C2 elements.

4.2.3 Computation of (1)

Using (10), we obtain that (1) is equivalent to:

p(z) := g(z, zi)
∏

a,b∈[C]

hab, (∀z ∈ [C]). (11)

In our schema, the server computes all possible values for

g(z, zi) and hab, and sends them to all parties. Each party

only needs to choose the corresponding values from these

values to compute p(z), without computing them again.

5. Private Clustering

We enhance the security of the schema in Table 2.

5.1 Private Schema
The adjacent matrix A is treated as private input shared

with the relevant parties. Each party i only knows its neigh-

bors, pa(i) and ch(i), i.e., party i only knows the ith row

and ith column in A. Throughout the sampling, m,M,n

are stored in the server, while each cluster label zi is up-

dated by party i. The final results of these values are also

regarded as their private outputs. The final outputs θ and

η reflect the relative size of each cluster and the relations

between each cluster pair, and published to all (Table 3).

5.2 Private Accumulation Stage
The µ(ij) in stage (4.1) cannot be explicitly computed.

Nevertheless, it can be protected by using SSP, s.t.,

µ(ij) = ρ(ij) + σ(ij), (12)

where ρ(ij) and σ(ij) are the random matrices known to

parties i and j, respectively. Since µ(ij) = ν(i)ν(j)T , i.e.,

µ
(ij)
ab = ν

(i)
a ν

(j)
b , so ρ

(ij)
ab + σ

(ji)
ab = ν

(i)
a ν

(j)
b . That is to say,

ρ(ij) and σ(ij) can be generated by executing the SSP for

each element of µ(ij). After the generations for all the

edges, each party i sums up all its ρ(ij) and σ(ki):

ρ(i) =
∑

(i,j)∈E

ρ(ij) +
∑

(k,i)∈E

σ(ki). (13)

Obviously,

m =
∑
i

ρ(i). (14)

If each party i sends ρ(i) to the server, m can be ac-

cumulated using (14). However, we must keep the server

from knowing the value of ρ(i)s, since these values may be

used to infer the adjacency information of some special ver-

tices, e.g., when a vertex has only one neighbor. To do this,

each party i sends X(i)(= Epk(ρ
(i))), instead of ρ(i), to the

server. From homomorphism (5), the ciphertext of m can

be computed by the server without decrypting X(i):

Epk(m) =
∏
i

X(i). (15)

Since the cryptosystem is (2, n+ 1)-threshold, the server

can discover m with any vertex in the network. Simi-

larly, the n can be securely obtained (6). The server com-

putes and encrypts all possible values, Epk(g(a, b)) and

Epk(h
(t)
ab (κ)) (a, b ∈ [C]), and then, publishes all these

(12K + 10)C2 ciphertexts to all parties.

5.3 Private Sampling Stage
In the private sampling stage, hab cannot be obtained by

any one, since hab has at most K+1 possible values, hence

its parameter, such as npaia in h
(1)
ab (npaia), can be easily

recovered from the value of hab. To solve this problem, we

propose a fully secure sampling algorithm, by which a party

securely performs a sampling with its neighbors without

explicitly computing hab. See [11] for more detail.

6. Analysis

6.1 Security
Since the distribution of the ciphertext is always a uni-

form distribution, it can be simulated by anyone. Goethals

et al. have guaranteed the security of the SSP [1].

Theorem 1 (Security). The intermediate information in

the secure clustering protocol does not reveal any informa-

tion about each individual vertex in the network.

6.2 Efficiency
All parties in the network run the protocol in parallel, but

each party can simultaneously run its operations with only

one neighbor. From Vizing’s theorem [10], we can obtain

that the total running cost is O((K + n)C2).

All the above running times are calculated corresponding

to one round of sampling. Suppose the sampling needs to

be performed t times, then the total running time becomes

t times longer than all the above running times.

3



The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

a . Accuracy of matching (α  vs. β ) b . Accuracy of matching (C =3)
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Figure 4: Experiments.

7. Experiments

7.1 Artificial Data
We first evaluate the accuracy of our clustering method

by using artificial data generated from IRM (Figure 3).

The relation between the matching rate and the parame-

ters, α and β, are shown in Figure 4-a. The large difference

between α and β may lead to a low level of accuracy. Fortu-

nately, using more sample data can increase the accuracy.

The relations between the matching rate and the vertex

number are shown in Figures 4-b and 4-c.

We evaluated the running time of our secure protocol

with encryption. Figure 4-d shows a one-round sampling

time with respect to different cluster numbers and maxi-

mum degrees. We found that the running time is nearly

independent of the vertex number. We also measured the

necessary round for convergence and the total running time

in Figures 4-e and 4-f , respectively. Since the necessary

round number drastically decreases with an increase in the

vertices number, the total running time decreases.

7.2 Real Data
We evaluated a network of books about US politics com-

piled by Krebs [5]. The nodes represent books about US

politics sold by Amazon.com. The edges represent the fre-

quent co-purchasing of books by the same buyers, as indi-

cated by the “customers who bought this book also bought

these other books”. The nodes were given three labels to

indicate whether they are liberal, neutral, or conservative

(Figure 5-a). The sampling results are shown in Figure 5-

b. This execution of the secure clustering only contained a

12-round sampling and spent about 136 seconds.

a. Original Labeled Data b. Experimental Results

Figure 5: Experimental Results of Real Data.

8. Conclusion

We proposed a method to securely cluster vertices in a

private network. This method can detect both assortative

and disassortative mixing models. Under the assumption

that each vertex is independent, private, and semi-honest,

our method is secure enough to preserve the privacy of each

party. The running cost of our method depends only on the

number of clusters and the maximum degree, and therefore,

it can be used for analyzing networks in practice.
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