4L1-R-8-3

ライフゲームのネットワーク表現と自己組織化臨界 Network Representation of the Game of Life and Self-organized Criticality

香山 喜彦 Yoshihiko Kayama

梅花女子大学 情報メディア学科 Department of Media and Information, BAIKA Women's University

This article introduces a network representation of Conway's Game of Life and studies its relation to self-organized criticality. Extending links of surviving patterns in a rest state of the Game of Life connect the patterns to each other and describe underlying tension, leading to avalanches from one-cell perturbations. The network of the rest state has power-law degree distributions for both in-links and out-links. The scale-free nature of the in-links can be explained as the effect of preferential attachment of the surviving cells in the rest state.

1. はじめに

セルオートマトン(CA)は、グリッド上に配置されたセルの状態 が, 近接するセルの状態に依存した単純なルールに従って時 間発展する模型であるが、多様な振る舞いを持つものが知られ ており、Wolfram によって 4 つのクラスに分類されている [Wolfram 1983]. 特にクラス IV に属するルールは, 自己組織 化や計算万能などとの関連から多くの研究がなされてきた.一 方,我々の身近に存在する様々な複雑系のネットワークは、ス モールワールド性[Watts 1998]やスケールフリー性[Barabási 1999]の特徴を持つことが知られている. そこで我々は, CA の 動的振る舞いをネットワークで視覚化することで, Wolfram クラ スとネットワーク構造との関連性を明らかにすることを目的として "CA のネットワーク表現"を提唱した[Kayama 2010, 2011]. [Kayama 2011]では1次元の代表的なルールについて議論し, 2 次元のルールとして最も有名であり、 クラス IV に属する Conway のライフゲーム(Life)のネットワーク表現についてスケー ルフリー性を確認した[Kayama 2012]. これは, Bak らによる Life ゲームでの自己組織化臨界(SOC)の確認と直接関連する結果 である[Bak 1987, 1989]. そこで本稿では, Life のネットワーク 表現を紹介するとともに、SOCとの関係について考察する.

Life のネットワーク表現によると、初期状態から過渡時間を経 た後の休止状態は, 生き残ったパターン同士が相互にリンクさ れたネットワークで表現される.このネットワークは,臨界状態に おける1 セル摂動による雪崩現象を発生させる原因となる緊張 状態を可視化しており、そのネットワーク構造は、自己組織化臨 界の特徴であるフラクタル構造により,スケールフリー性を持つ と考えられる.ここでは、ネットワーク理論のパラメータを用いて、 実際に自己組織化臨界を確認し,休止状態のネットワークがス ケールフリー性を持つことを示す.

2. ライフゲームのネットワーク表現

ネットワーク表現は、1 セル摂動に対する、ある時間発展後の 他のセルへの影響をエッジでつなぎ、すべてのセルの摂動に ついて得られたグラフを統合して定義される. 摂動を付与する 時刻を toとし、そこからの時間発展を toとしてネットワークを求め る. これにより, toと tiに対するネットワークの変化を表現でき, to として過渡時間を超える値を設定すれば, Life の休止状態に対

連絡先:大阪府茨木市宿久庄 2-19-5,梅花女子大学情報メ ディア学科, 072-643-6221, kayama@baika.ac.jp

するネットワークを求めることが可能となる.

2.1 代表的パターンのネットワーク

Life の代表的なパターンは, 静止したままの still life, 一定 の周期でパターンを繰り返す oscillator,一定の周期でパタ ーンを繰り返しながら Life の lattice 上を移動する

図 1 Block

spaceship に分けることができる. 例として, 図 1,2 に代表的な still life のパターンとそれらのネットワークを提示する. ここで重 要なことは、同じ still life に属するパターンでも、それらのネット ワークが2つに分類できることである. Block (図1)の場合, ネッ トワークは t₁ すなわち摂動からの時間発展とともにこれ以上成 長することはないが、Beehive (図 2)ではネットワークも成長し続

ける. 他のパターンでも こうした分類は可能で, Blinker や Glider などの ネットワークについては [Kayama 2012]に紹介さ れている.

 \boxtimes 2 Beehive (t_I =20)

2.2 休止状態のネットワーク

前節で述べた成長するネットワークの存在は、休止状態のネ ットワークに対し大きな意味を持つ. すなわち, t,を十分大きく取 れは、休止状態に生き残ったパターン同士がネットワークで結 び付けられることになる(図 3). このグローバルなネットワークは, 1 セル摂動から生じる雪崩現象の原因となる緊張状態が可視化 されたことを意味する. Bak らは, 雪崩現象の寿命と規模を計測 して、それらの分布にスケールフリー性があることを示した[Bak 1989].

図3休止状態とそのネットワーク(t1=25)

3. 休止状態のネットワークと自己組織化臨界

以下では、Bak らが求めた雪崩現象の寿命と規模をネットワ ーク表現で解釈し、実際にそれらの分布がスケールフリー性を 持つことを示して Life の自己組織化臨界を確認する.まず、各 雪崩の寿命は、1 セル摂動の後、再度休止状態に至るまでの時 間間隔として、[Bak 1989]と同様に定義できる.一方、雪崩のサ イズ s は、我々のネットワーク表現が、セルの状態値(0または 1) に個別の意味を付与せず、その変化のみに注目していることか ら、以下のように定義する.

$$s(i, j) \equiv \sum_{t=1}^{l(i,j)} \left| n_{out}^{(i,j)}(t) - n_{out}^{(i,j)}(t-1) \right|$$

但し, l(i, j) は, セル(i, j)の摂動で生じた雪崩の寿命で, $n_{out}^{(i,j)}(t)$ は時刻 t にセル(i, j)から出るリンクの数である. 周期 的境界条件のもとに, グリッドの1辺のサイズ N = 51, 101, 151, 201 に対して求めた結果, 寿命とサイズの分布 D(l)および D(s) それぞれについて, 図 4 のようなスケールフリー性を確認 した. 但し, $t_0 = 10^5$, $t_i = 10^4$ とし, 約 7.6 × 10⁵ の 1 セル摂動か ら寿命が 1 ステップ以上の雪崩約 1.5 × 10⁵ を得た.

図 4 雪崩現象の(a)寿命と(b)サイズの分布(両対数). グリッド の 1 辺 N=51,100,151,201.とし,周期的境界条件のもとに, $t_0 = 10^5$, $t_1 = 10^4$ で,各 10 個の初期状態について 1 セル摂 動から求められたすべての雪崩について求めた結果である. 近 似直線の傾きは(a)1.30, (b)1.15.

図 4 は Bak らの結果に対応し、Life が SOC の性質を持つことを意味している.一方、この休止状態のネットワークについて、 頂点から出るリンクの数(out-degree)の分布を求めてみると図 5 のようになる.周期的境界条件による回り込みの効果がない(a) $t_i = N/2$ の場合に比べ、 t_i が十分大きい(b) $t_i = 10^4$ では、明 らかなスケールフリー性を示している.なお、(a)がスケールフリ ーにならないのは、グリッドサイズ N の値が小さいためだと考え られる.一方、in-degree の分布(図 6) では、むしろ(a) $t_i = N/2$

図 5 休止状態ネットワークの out-degree 分布. (a) $t_1 = N/2$ に 比べ(b) $t_1 = 10^4$ のほうが明らかなスケールフリー性を示す.

の場合のほうがスケールフリーとなる.確認したところ,図6の高 い次数を持つセル,すなわちハブノードは、すべて休止状態に 生き残ったパターンを構成するセルである.1 セル摂動の後、こ れらのセルの状態が変化すると、休止状態に戻った際には、こ れらのセルが再度生き残る可能性は極めて低く、in-degree が増 大する. すなわちこれらのセルは,休止状態に生き残った時点 で優先度を持つことになり,図 6-(a)のスケールフリー性は優先 選択によるものだと考えられる. なお,図 6-(b)で,それらがさら に高い次数に分離するのは,周期的境界条件による回り込み の効果である.

図 6 休止状態ネットワークの in-degree 分布. (a) $t_1 = N/2$ のほうが明らかなスケールフリー性を示す. 近似直線の傾きは 1.32.

4. まとめ

CA のネットワーク表現は、1 セル摂動の効果をネットワークと いう形で視覚化したものである.これにより、ネットワーク理論の 手法を CA の動的性質の検討に利用することができる.ここで 示したように、Life の特徴的パターンのネットワークは、成長す るものとそうでないものの 2 種類に分けることができる.特に前 者は、休止状態のネットワークにおいて、生き残ったパターンを 相互に連結させる役割を持ち、グリッド上に広がったネットワー クは、潜在的な緊張状態を視覚化している. Bak らが SOC とし て確認した雪崩現象のスケールフリー性は、まさにこのネットワ ークを構成する部分木の長さと成長する枝の総計を求めたもの であることがわかる.さらに、このネットワークの in-および outdegree の分布もスケールフリー性を持つことが明らかとなった.

Life はクラス IV に属するルールであるが、クラス IV と SOC との関連を明確にすることは、今後の重要な課題である.

参考文献

- [Wolfram 1983] S. Wolfram: Statistical Mechanics of Cellular Automata, Rev. Mod. Phys., 55, pp.601–644, 1983.
- [Watts 1998] D. J. Watts, S. H. Strogatz: Collective Dynamics of Small-World Networks, Nature 393, pp.440–442 1998.
- [Barabási 1999] A.-L. Barabási, R. Albert, Emergence of Scaling in Random Networks: Science 286, pp.509–512 1999.
- [Kayama 2010] Y. Kayama: Complex networks derived from cellular automata, arXiv:1009.4509, 2010.
- [Kayama 2011] Y. Kayama: Network Representation of Cellular Automata, in IEEE ALIFE 2011 at SSCI 2011, pp. 194–202, 2011.
- [Kayama 2012] Y. Kayama, and Y. Imamura: Network Representation of the Game of Life, to be appeared in Journal of Artificial Intelligence and Soft Computing Research, Polish Neural Network Society, 2012.
- [Bak 1987] P. Bak, C. Tang, and K. Wiesenfeld: Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett., vol. 59 (4), pp. 381–384, 1987.
- [Bak 1989] P. Bak, K. Chen, and M. Creutz: Self-organized criticality in the 'Game of Life', Nature (London), vol. 342, p. 780, 1989.