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Ontology Instance Matching is a key interoperability enabler across heterogeneous data sources in the semantic web and a 

useful maneuver in some classical data integration tasks dealing with the semantic heterogeneous assignments. As 

heterogeneous sources of massive ontology instances grow dramatically day by day, scalability has become a major research 

issue in ontology instance matching of semantic knowledge bases. In this paper, we propose an efficient method by grouping 

instances into several sub-groups to address the scalability issue. Then, our instance matcher,  which considers the semantic 

specification of properties associated to instances in matching strategy, works by comparing an instance within a 

classification group of one knowledge base against the instances of same sub-group of other knowledge base to achieve 

interoperability. A cunning approach for measuring the influence of properties in matching process is also presented. The 

experiment depicts satisfactory results in terms of effectiveness and scalability over baseline methods.   

 

1. Introduction 

Ontologies, defined as “explicit formal specification of a 

shared conceptualization [2]”, have become the backbone to 

enable the fulfillment of the semantic web vision [6]. Nowadays, 

ontology alignment has been taken as a key technology to solve 

interoperability problems across heterogeneous data sources. It 

takes ontologies as input and determines as output an alignment, 

that is, a set of correspondences between the semantically related 

entities of those ontologies. These correspondences can be used 

for various tasks, such as ontology merging, data translation, 

query answering or navigation on the web of data. Thus, 

matching ontologies enables the knowledge and data expressed 

in the matched ontologies to interoperate. However, success of 

the vision of semantic web [1] depends on the availability of 

semantic linked data. Semantic linked data are all about 

connected data i.e. people, places and things are connected to 

each other. Each individual is known as instance [8]. With the 

development of Linked data and various social network websites, 

huge amount of semantic data is published on the web, which not 

only imposes new technology challenges over traditional schema 

level ontology alignment algorithms, but also demands new 

techniques for instance matching [7]. 

 Ontology instance matching compares different individuals 

with the goal of identifying the same real world objects. In the 

literature, the instance matching problem has been widely 

investigated in several application domains where it is known 

with different names such as identity recognition, record linkage, 

and entity resolution problem etc. according to the requirements 

that need to be satisfied [8]. Instance matching plays a crucial 

role in semantic data integration as it interconnects all the islands 

of instances of semantic world to achieve the interoperability and 

information integration issues. Ontology instance matching is 

equally important in ontology population as it helps to correctly 

perform the insertion and update operation and to discover the 

relationship between the new incoming instance and the set of 

instance already stored in the ontology [10]. 

In several systems, [9,11] information of instances in an 

ontology is frequently used to support ontology schema matching. 

However, information of schema is equally importance in 

alignment of individuals that are sharing the same ontology 

structure. Moreover, several individual groups are also working 

to create billions of triples to represent ontology instances of 

semantic web which also raise the challenge of scalability in 

instance matching assignment. In this study, ontology schema 

matching and instance matching work together for discovering 

semantic mappings between possible distributed and 

heterogeneous semantic data. In [4], scalable ontology schema 

matching and in [5,8,12] instance matching are developed. 

However, further improvement of automatic weight generation 

and scalability in instance matching are still necessary which is 

the goal of this paper. 

Our system uses our Anchor-flood algorithm to get the aligned 

concepts. According to the information of the instances of a 

concept, we automatically assign a weight factor, frequency 

factor and category factory to each of the properties of that class. 

Weight factor defines how many unique values a property 

contains. Frequency factor indicates how many instances contain 

values for the particular property. Category factor describes the 

efficiency of a property to be used for categorizing instances of a 

class. Then based on aligned concepts, we select common 

properties by which instances of both concepts are grouped. 

After that, our instance matcher, which considers the semantic 

specification of properties associated to instances in matching 

strategy, works by comparing an instances within a classification 

of group of one knowledge base (concept) against the instances 

of corresponding sub-group of other aligned concept.   

The rest of the paper is organized as follows.  Section 2 

describes terminology frequently used throughout the paper. Our 

instance matching approach with automatic property weight 

factor is narrated in section 3. Scalability issue in instance 

matching depicts in section 4. Section 5 focuses on experiment 

and evaluation. Final remarks and further scopes of improvement 

are discussed in section 6. Contact: Masaki Aono, Toyohashi University of Technology, 1-1 
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2. General Information 

This section introduces the basic definitions for familiarizing the 

readers with the notations and terminology used throughout the 

paper.  

2.1 Ontology 

An ontology is the basic element of the semantic web and the 

semantic knowledge base. According to M. Ehrig [3], an 

ontology contains a core ontology, logical mappings, a 

knowledge base, and a lexicon. Furthermore, a core ontology is 

defined as a tuple of five sets: concepts, concept hierarchy or 

taxonomy, properties, property hierarchy, and concept to 

property function. 

S  := (C, ≤C , R, σ, ≤R) 

consisting of two disjoint sets C and R whose elements are called 

concepts and relations, two partial orders ≤C on C called concept 

hierarchy or taxonomy and ≤R on R called relation hierarchy, and 

a function σ:R −→ C × C called signature of binary relation 

where σ(r) = (dom(r), ran(r)) with r ∈ R, domain dom(r) and 

range ran(c). Ontology schema is often called as TBox. 

2.2 Semantic knowledge base 

The semantic knowledge base is a structure 

KB  := (C, R, I, ιC , ιR) 

consisting of two disjoint sets C and R as defined be-fore, a set I 
whose elements are called instances, two functions ιC and ιR 

called concept instantiation and relation instantiation respectively.  
ABox contains TBox-compliant statements about individuals 
belonging to those concepts. 

2.3 Anchor-flood algorithm 

Ontology instances are defined by the concepts and properties 

of ontology schema. Unless aligning schema entities, i.e. 

concepts and properties across ontologies, instance matching is 

not often achievable. Therefore, we use our scalable and efficient 

ontology alignment algorithm called Anchor-Flood to obtain 

alignment (a set of aligned-pair of schema entities, such as 

concepts, properties etc.) between ontology pair. Our Anchor-

Flood algorithm achieved the best running time against the large 

ontology schema in Ontology Alignment Evaluation Initiative 

(OAEI), 2008 and 2009 [5].  

Our scalable algorithm of ontology alignment starts off a seed 

point called an anchor (a pair of “look-alike” concepts from each 

of two ontologies). Starting off an anchor point, our scalable 

algorithm collects two sets of neighboring concepts across 

ontologies. Then it computes the structural and terminological 

similarity among the collected concepts and produces a list of 

aligned pairs. The collected concept pairs are in turn considered 

as further seed points or anchors. The operation cycle is repeated 

for each of the newly found aligned concept pairs. The cycle is 

stopped if there is no more new concept pair left to be considered 

as an anchor. 

2.4 Semantic linked cloud (SLC) 

 In an ontology, neither a concept nor an instance comprises its 

full specification in its name or URI (Uniform Resource 

Identifier) alone. Therefore we consider the semantically linked 

information that includes concepts, properties and their values 

and other instances as well. They all together make an 

information cloud to specify the mean-ing of that particular 

instance. The degree of certainty is proportional to the number of 

semantic links associated to a particular instance by means of 

property values and other instances. The SLC is defined below: 

A Semantic Link Cloud (SLC) of an instance is defined as a 

part of knowledge base [3] that includes all linked concepts, 

properties and their instantiations which are related to specify the 

instance sufficiently.  

3. Instance matching approach 

In this study, we improve our state of art instance matching 

algorithm by computing similarity of two candidates based on 

weight factors of the properties related to instances; i.e. each of 

the properties of a concept contains a weight factor. Moreover, 

for addressing scalability issue in instance matching we classify 

the instances of a concept by a specific method. 

3.1 Property weight factor 

Instances contain values associating with properties. Some 

properties may have higher influence than others in instance 

matching. For example, though both of instances have different 

values for the property hasAge, they are same individual if they 

have common values for the property hasEmail as the data is 

captured at different year. So, we can make as assumption that 

those properties have higher weight factors for which instances 

contain more unique values; i.e. “the more the uniqueness, the 

more the weight factor”. Therefore, we define the weight factor 

of each property of an ontology concept used in a knowledgebase 

as follows: 

         weight factor, (Ƥw) = log( | i з Ƥu  | ) / log(|i |)               (1) 

 

where Ƥw is the property weight, i  represents an instance,          

( | i з Ƥu  | ) represents the number of instances contain the distinct 

or unique value for property Ƥ, and |i| represents the number of 

instances of the concept which has property Ƥ .   

3.2 SLC generation  

   According to the definition of a Semantic Link Cloud (SLC), 

collection of linked information of an instance is an important 

step toward the instance matching. Collection of semantically 

linked resources of ABox along with concepts or properties of 

TBox specifies an instance at sufficient depth to identify 

instances even at a different location or with quite different label. 

Therefore, our proposed method collects all the linked 

information from a particular instance as a reference point. The 

linked information is defined as the concepts, properties or their 

values which have a direct relation to the reference instance [8, 

12]. 

3.3 Instance matching algorithm (IMA) 

   Suppose two instances i
1
 and i

2
 of the same or aligned concept 

are given. The instance affinity function IA(i
1
,i
2
) ->[0,1] 

provides a value in the range [1,0]. IA is calculated by 

comparing the elements of SLCs of both instances. Here, we 

consider weight factors of properties in calculation.  
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    Instances contain their lexical information as values of 

properties. String metric [13] is used for measuring similarity 

between two strings. Let Sp be a string and Sq be another string. 

The string based similarity between Sp and Sq is then measured 

as follows: 

     Sim(sp ,sq)=com.(sp , sq) – diff.(sp , sq) + winkler(sp , sq) 

where com.(sp , sq) indicates the commonality between sp and sq.  

diff.(sp, sq) stands for the difference and winkler(sp , sq) for the 
improvement of the result using the method introduced by 
Winkler [13]. 
   Two property values sp and sq are equal if their string similarity 
is greater or equal to threshold. Therefore, we define an equality 
function Epq(sp, sq )as follows: 
 

                       
                          
                                    

                           (2) 

 
Let two instances ins1 and ins2 are represented by slc1 and slc2 
respectively.  So, affinity between ins1 and ins2 is measured by 
measuring the affinity between two SLCs; slc1 and slc2. We 
define the affinity between two SLCs by considering weight 
factor assigned to each of the property automatically as follows: 

 

                    
                                   

           
              

  
 

           (3) 
where   indicates the factors for missing property values. 
 

Algorithm: instancMatch (ABox ab1, ABox ab2, Alignment A) 

1. for each insi ∈ ab1 

2.      slci= generateSLC(insi,ab1) 

3.      for each insj ∈ ab2 

4.            slcj=generateSLC(insj,ab2) 

5.            if   a(c1,c2) ∈ A|c1  concept(insi)    c2   concept(insj) 

6.               if IA(slci,slcj)≥      

7.                 imatch=imatch   makeAlign (insi,insj) 

 

Figure1. Pseudo code of Instance Matching Algorithm. 

 
Fig.1 describes a simple flow of the matching algorithm. For an 

SLC of an instance is matched against every SLCs of instances 

of knowledge base (line 1 through 4 in Fig. 1) if and only if there 

concepts are aligned (as there exists a condition at line 5 in Fig. 

1). Function generateSLC(ins,ab) collects an SLC against an 

instance ins in ABox ab. An SLC usually contains concepts, 

properties, and their consolidated values. Every value of an SLC 

is compared with that of another SLC (as of line 6 of Fig. 1). 

Once similarity value is greater than the threshold, it is collected 

as an aligned pair (as stated at line 7 in Fig. 1). Finally, the 

algorithm produces a list of matched instance pairs. 

4. Scalability issue in Instance matching  

   Day by day, the size of knowledge bases is increasing sharply. 

For example, even older dblp contains 400,000 authors while 

there are 198,056 persons in Dbpedia. Our brute force algorithm 

compares every author of dblp to every persons of Dbpedia (as 

person is aligned with author). So, it requires 400,000*198,056 

SLCs comparisons. Hence, it suffers from scalability problem. 

Here we propose an efficient method by automatically further 

classifying the instance set of a concept into several sub-groups 

according to special properties that are selected by analyzing 

their property category factor. Following sub-sections describe in 

details.  

4.1 Property frequency factor 

   For each property of a concept, property frequency factor is 

assigned. Property frequency factor describes how many 

instances contain values for that property. So, that property has 

more frequency factor for which more instances contain values 

for it. For example, name property of person concept may have 

high frequency factor as every person must have a name. We 

define the frequency factor of a particular property by following 

equation. 

         frequeny factor, (Ƥf) = log( | i з Ƥ  | ) / log(|i |)               (4) 

 

where Ƥf is the property weight, i  represents an instance, ( |i з Ƥ| ) 

represents the number of instances contain values for property Ƥ, 

and |i| represents the number of instances of the concept that has 

property Ƥ .   

4.2 Property Category factor 

  Category factor of a property defines how much it is appropriate 

for grouping the instances of the concept. We define category 

factor of property in a cunning way so that the properties which 

have little weight factor but high frequency factor become better 

candidates for instance categorization. Equation 5 defines the 

property category factor mathematically.  

 

              category factor, (Ƥc) = Ƥw /Ƥf     

                                                =                             )             (5) 

 The lower value for category factor of a property indicates better 

candidate.    

4.3 Selection of properties for grouping instances 

  We set a threshold value for choosing properties from available 

properties of concept. That is a property is a member of the set of 

candidate property, Sp if its category factory is lower than the 

threshold value. Now, we finalize the properties selection by 

taking the intersection of the sets of candidate properties of 

aligned concepts. For example, concept C1 and concept C2 are 

aligned and the set of candidate property of C1 and C2 are      

and      respectively. So, the final set of property S, by which 

instances of both concepts will be grouped, is  

 

                                                                                         (6) 

4.4 Scalable instance matching algorithm 

 

Algorithm: scalableInstancMatch (ABox ab1, ABox ab2, 

Alignment A) 

1. for each a(c1,c2) ∈ A |c1∈ concept(ont.1)   c2 ∈ concept(ont.2) 

2.    cluster s1= classifyInstances (c1, ab1 , selectedPropertySet S) 

3.    cluster s2= classifyInstances (c2, ab2 , selectedPropertySet S) 

4.          for each Category cid 

5.            if cid   (clusterm  ∈ cluster s1   clustern  ∈ cluster s2    

6.              call IM=IM   instanceMatch (clusterm, clustern, A) 

7.                 return IM 

        

   Figure 2. Scalable Instance Matching Algorithm 



The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012 

- 4 - 

Fig. 2 describes our propose scalable algorithm for matching ins- 

tances of large knowledge bases which works for each aligned 

concepts pair given by our ontology schema matching Anchor-

flood algorithm (sec.2.3). Function classifyInstances classifies 

the instances of a concept according to the selected properties 

values. For a pair of common category we call our previous 

algorithm instanceMatch (Fig.1). Finally, algorithm returns the 

set of aligned instance pairs.  

5. Experiment and Evaluation 

    ISLab Instance Matching Benchmark is used for evaluation. 

The test-bed provides OWL/RDF data about actors, sport persons, 

and business firms. The main directory contains 37 sub-

directories and the original ABox and the associated TBox 

(abox.owl and tbox.owl). Each sub-directory contains a modi-

fied ABox (abox.owl + tbox.owl) and the corresponding mapping 

with the instances in the original ABox (refalign.rdf). The 

benchmark data is divided into four major groups: value 

transformation (001-010), structural transformation (011-019), 

logical transformation (020-029) and combination transformation 

(030-037).  

    OAEI-2009 introduces instance matching track to the 

participants. The following recall-precision graph (Fig.3) depicts 

the performances of different systems where our Anchor-flood 

(AFlood) algorithm works without considering the weight factors 

of properties. Fig. 4 describes the improvement of our proposed 

method over different transformation in comparison with 

previous one. Here, we use the well known precision and recall 

as measurement matrices. Moreover, our proposed one boasts for 

less computational time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Instance Matching Results in OAEI-2009 Campaign 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Comparison of proposed method with previous one 

6. Conclusion 

    An efficient method of assigning automatic weight to each of 

the property and addressing scalability issue to improve our 

state-of–the-art ontology instance matching is presented. As 

matching of instances are computing by considering the weight 

factors of the properties associated to them, better outcomes in 

terms of precision and recall are achieved. Though our scalable 

algorithm takes some extra times for pre-processing, it reduces 

the SLCs comparisons sufficiently. However, precision is also a 

major concern when the sizes of datasets are increasing as our 

algorithm matches the instances only if their concepts are aligned. 

We will try to achieve further improvement by addressing the 

same individual that resides in non-aligned concepts across 

knowledge bases. Testing our algorithm with large knowledge 

bases like Dbpedia and dblp as well as to fit it with LOD (Linked 

Open Data) project are also our future concerns.   
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