
The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 1 -

An Efficient Method for Ontology Instance Matching

Rudra Pratap Deb Nath
*1

 Hanif Seddiqui
*2

 Masaki Aono
*1

 *1 Dept. of Computer Science & Engineering *2 Dept. of Computer Science & Engineering

 Toyohashi University of Technology University of Chittagong

 Toyohashi, Aichi, Japan Chittagong, Bangladesh

Ontology Instance Matching is a key interoperability enabler across heterogeneous data sources in the semantic web and a

useful maneuver in some classical data integration tasks dealing with the semantic heterogeneous assignments. As

heterogeneous sources of massive ontology instances grow dramatically day by day, scalability has become a major research

issue in ontology instance matching of semantic knowledge bases. In this paper, we propose an efficient method by grouping

instances into several sub-groups to address the scalability issue. Then, our instance matcher, which considers the semantic

specification of properties associated to instances in matching strategy, works by comparing an instance within a

classification group of one knowledge base against the instances of same sub-group of other knowledge base to achieve

interoperability. A cunning approach for measuring the influence of properties in matching process is also presented. The

experiment depicts satisfactory results in terms of effectiveness and scalability over baseline methods.

1. Introduction

Ontologies, defined as “explicit formal specification of a

shared conceptualization [2]”, have become the backbone to

enable the fulfillment of the semantic web vision [6]. Nowadays,

ontology alignment has been taken as a key technology to solve

interoperability problems across heterogeneous data sources. It

takes ontologies as input and determines as output an alignment,

that is, a set of correspondences between the semantically related

entities of those ontologies. These correspondences can be used

for various tasks, such as ontology merging, data translation,

query answering or navigation on the web of data. Thus,

matching ontologies enables the knowledge and data expressed

in the matched ontologies to interoperate. However, success of

the vision of semantic web [1] depends on the availability of

semantic linked data. Semantic linked data are all about

connected data i.e. people, places and things are connected to

each other. Each individual is known as instance [8]. With the

development of Linked data and various social network websites,

huge amount of semantic data is published on the web, which not

only imposes new technology challenges over traditional schema

level ontology alignment algorithms, but also demands new

techniques for instance matching [7].

 Ontology instance matching compares different individuals

with the goal of identifying the same real world objects. In the

literature, the instance matching problem has been widely

investigated in several application domains where it is known

with different names such as identity recognition, record linkage,

and entity resolution problem etc. according to the requirements

that need to be satisfied [8]. Instance matching plays a crucial

role in semantic data integration as it interconnects all the islands

of instances of semantic world to achieve the interoperability and

information integration issues. Ontology instance matching is

equally important in ontology population as it helps to correctly

perform the insertion and update operation and to discover the

relationship between the new incoming instance and the set of

instance already stored in the ontology [10].

In several systems, [9,11] information of instances in an

ontology is frequently used to support ontology schema matching.

However, information of schema is equally importance in

alignment of individuals that are sharing the same ontology

structure. Moreover, several individual groups are also working

to create billions of triples to represent ontology instances of

semantic web which also raise the challenge of scalability in

instance matching assignment. In this study, ontology schema

matching and instance matching work together for discovering

semantic mappings between possible distributed and

heterogeneous semantic data. In [4], scalable ontology schema

matching and in [5,8,12] instance matching are developed.

However, further improvement of automatic weight generation

and scalability in instance matching are still necessary which is

the goal of this paper.

Our system uses our Anchor-flood algorithm to get the aligned

concepts. According to the information of the instances of a

concept, we automatically assign a weight factor, frequency

factor and category factory to each of the properties of that class.

Weight factor defines how many unique values a property

contains. Frequency factor indicates how many instances contain

values for the particular property. Category factor describes the

efficiency of a property to be used for categorizing instances of a

class. Then based on aligned concepts, we select common

properties by which instances of both concepts are grouped.

After that, our instance matcher, which considers the semantic

specification of properties associated to instances in matching

strategy, works by comparing an instances within a classification

of group of one knowledge base (concept) against the instances

of corresponding sub-group of other aligned concept.

The rest of the paper is organized as follows. Section 2

describes terminology frequently used throughout the paper. Our

instance matching approach with automatic property weight

factor is narrated in section 3. Scalability issue in instance

matching depicts in section 4. Section 5 focuses on experiment

and evaluation. Final remarks and further scopes of improvement

are discussed in section 6. Contact: Masaki Aono, Toyohashi University of Technology, 1-1

Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, japan. 0532-44-

6764, aono@tut.jp

1I2-R-4-1

mailto:aono@tut.jp

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 2 -

2. General Information

This section introduces the basic definitions for familiarizing the

readers with the notations and terminology used throughout the

paper.

2.1 Ontology

An ontology is the basic element of the semantic web and the

semantic knowledge base. According to M. Ehrig [3], an

ontology contains a core ontology, logical mappings, a

knowledge base, and a lexicon. Furthermore, a core ontology is

defined as a tuple of five sets: concepts, concept hierarchy or

taxonomy, properties, property hierarchy, and concept to

property function.

S := (C, ≤C , R, σ, ≤R)

consisting of two disjoint sets C and R whose elements are called

concepts and relations, two partial orders ≤C on C called concept

hierarchy or taxonomy and ≤R on R called relation hierarchy, and

a function σ:R −→ C × C called signature of binary relation

where σ(r) = (dom(r), ran(r)) with r ∈ R, domain dom(r) and

range ran(c). Ontology schema is often called as TBox.

2.2 Semantic knowledge base

The semantic knowledge base is a structure

KB := (C, R, I, ιC , ιR)

consisting of two disjoint sets C and R as defined be-fore, a set I
whose elements are called instances, two functions ιC and ιR

called concept instantiation and relation instantiation respectively.
ABox contains TBox-compliant statements about individuals
belonging to those concepts.

2.3 Anchor-flood algorithm

Ontology instances are defined by the concepts and properties

of ontology schema. Unless aligning schema entities, i.e.

concepts and properties across ontologies, instance matching is

not often achievable. Therefore, we use our scalable and efficient

ontology alignment algorithm called Anchor-Flood to obtain

alignment (a set of aligned-pair of schema entities, such as

concepts, properties etc.) between ontology pair. Our Anchor-

Flood algorithm achieved the best running time against the large

ontology schema in Ontology Alignment Evaluation Initiative

(OAEI), 2008 and 2009 [5].

Our scalable algorithm of ontology alignment starts off a seed

point called an anchor (a pair of “look-alike” concepts from each

of two ontologies). Starting off an anchor point, our scalable

algorithm collects two sets of neighboring concepts across

ontologies. Then it computes the structural and terminological

similarity among the collected concepts and produces a list of

aligned pairs. The collected concept pairs are in turn considered

as further seed points or anchors. The operation cycle is repeated

for each of the newly found aligned concept pairs. The cycle is

stopped if there is no more new concept pair left to be considered

as an anchor.

2.4 Semantic linked cloud (SLC)

 In an ontology, neither a concept nor an instance comprises its

full specification in its name or URI (Uniform Resource

Identifier) alone. Therefore we consider the semantically linked

information that includes concepts, properties and their values

and other instances as well. They all together make an

information cloud to specify the mean-ing of that particular

instance. The degree of certainty is proportional to the number of

semantic links associated to a particular instance by means of

property values and other instances. The SLC is defined below:

A Semantic Link Cloud (SLC) of an instance is defined as a

part of knowledge base [3] that includes all linked concepts,

properties and their instantiations which are related to specify the

instance sufficiently.

3. Instance matching approach

In this study, we improve our state of art instance matching

algorithm by computing similarity of two candidates based on

weight factors of the properties related to instances; i.e. each of

the properties of a concept contains a weight factor. Moreover,

for addressing scalability issue in instance matching we classify

the instances of a concept by a specific method.

3.1 Property weight factor

Instances contain values associating with properties. Some

properties may have higher influence than others in instance

matching. For example, though both of instances have different

values for the property hasAge, they are same individual if they

have common values for the property hasEmail as the data is

captured at different year. So, we can make as assumption that

those properties have higher weight factors for which instances

contain more unique values; i.e. “the more the uniqueness, the

more the weight factor”. Therefore, we define the weight factor

of each property of an ontology concept used in a knowledgebase

as follows:

 weight factor, (Ƥw) = log(| i з Ƥu |) / log(|i |) (1)

where Ƥw is the property weight, i represents an instance,

(| i з Ƥu |) represents the number of instances contain the distinct

or unique value for property Ƥ, and |i| represents the number of

instances of the concept which has property Ƥ .

3.2 SLC generation

 According to the definition of a Semantic Link Cloud (SLC),

collection of linked information of an instance is an important

step toward the instance matching. Collection of semantically

linked resources of ABox along with concepts or properties of

TBox specifies an instance at sufficient depth to identify

instances even at a different location or with quite different label.

Therefore, our proposed method collects all the linked

information from a particular instance as a reference point. The

linked information is defined as the concepts, properties or their

values which have a direct relation to the reference instance [8,

12].

3.3 Instance matching algorithm (IMA)

 Suppose two instances i
1
 and i

2
 of the same or aligned concept

are given. The instance affinity function IA(i
1
,i
2
) ->[0,1]

provides a value in the range [1,0]. IA is calculated by

comparing the elements of SLCs of both instances. Here, we

consider weight factors of properties in calculation.

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 3 -

 Instances contain their lexical information as values of

properties. String metric [13] is used for measuring similarity

between two strings. Let Sp be a string and Sq be another string.

The string based similarity between Sp and Sq is then measured

as follows:

 Sim(sp ,sq)=com.(sp , sq) – diff.(sp , sq) + winkler(sp , sq)

where com.(sp , sq) indicates the commonality between sp and sq.

diff.(sp, sq) stands for the difference and winkler(sp , sq) for the
improvement of the result using the method introduced by
Winkler [13].
 Two property values sp and sq are equal if their string similarity
is greater or equal to threshold. Therefore, we define an equality
function Epq(sp, sq)as follows:

 (2)

Let two instances ins1 and ins2 are represented by slc1 and slc2
respectively. So, affinity between ins1 and ins2 is measured by
measuring the affinity between two SLCs; slc1 and slc2. We
define the affinity between two SLCs by considering weight
factor assigned to each of the property automatically as follows:

 (3)
where indicates the factors for missing property values.

Algorithm: instancMatch (ABox ab1, ABox ab2, Alignment A)

1. for each insi ∈ ab1

2. slci= generateSLC(insi,ab1)

3. for each insj ∈ ab2

4. slcj=generateSLC(insj,ab2)

5. if a(c1,c2) ∈ A|c1 concept(insi) c2 concept(insj)

6. if IA(slci,slcj)≥

7. imatch=imatch makeAlign (insi,insj)

Figure1. Pseudo code of Instance Matching Algorithm.

Fig.1 describes a simple flow of the matching algorithm. For an

SLC of an instance is matched against every SLCs of instances

of knowledge base (line 1 through 4 in Fig. 1) if and only if there

concepts are aligned (as there exists a condition at line 5 in Fig.

1). Function generateSLC(ins,ab) collects an SLC against an

instance ins in ABox ab. An SLC usually contains concepts,

properties, and their consolidated values. Every value of an SLC

is compared with that of another SLC (as of line 6 of Fig. 1).

Once similarity value is greater than the threshold, it is collected

as an aligned pair (as stated at line 7 in Fig. 1). Finally, the

algorithm produces a list of matched instance pairs.

4. Scalability issue in Instance matching

 Day by day, the size of knowledge bases is increasing sharply.

For example, even older dblp contains 400,000 authors while

there are 198,056 persons in Dbpedia. Our brute force algorithm

compares every author of dblp to every persons of Dbpedia (as

person is aligned with author). So, it requires 400,000*198,056

SLCs comparisons. Hence, it suffers from scalability problem.

Here we propose an efficient method by automatically further

classifying the instance set of a concept into several sub-groups

according to special properties that are selected by analyzing

their property category factor. Following sub-sections describe in

details.

4.1 Property frequency factor

 For each property of a concept, property frequency factor is

assigned. Property frequency factor describes how many

instances contain values for that property. So, that property has

more frequency factor for which more instances contain values

for it. For example, name property of person concept may have

high frequency factor as every person must have a name. We

define the frequency factor of a particular property by following

equation.

 frequeny factor, (Ƥf) = log(| i з Ƥ |) / log(|i |) (4)

where Ƥf is the property weight, i represents an instance, (|i з Ƥ|)

represents the number of instances contain values for property Ƥ,

and |i| represents the number of instances of the concept that has

property Ƥ .

4.2 Property Category factor

 Category factor of a property defines how much it is appropriate

for grouping the instances of the concept. We define category

factor of property in a cunning way so that the properties which

have little weight factor but high frequency factor become better

candidates for instance categorization. Equation 5 defines the

property category factor mathematically.

 category factor, (Ƥc) = Ƥw /Ƥf

 =) (5)

 The lower value for category factor of a property indicates better

candidate.

4.3 Selection of properties for grouping instances

 We set a threshold value for choosing properties from available

properties of concept. That is a property is a member of the set of

candidate property, Sp if its category factory is lower than the

threshold value. Now, we finalize the properties selection by

taking the intersection of the sets of candidate properties of

aligned concepts. For example, concept C1 and concept C2 are

aligned and the set of candidate property of C1 and C2 are

and respectively. So, the final set of property S, by which

instances of both concepts will be grouped, is

 (6)

4.4 Scalable instance matching algorithm

Algorithm: scalableInstancMatch (ABox ab1, ABox ab2,

Alignment A)

1. for each a(c1,c2) ∈ A |c1∈ concept(ont.1) c2 ∈ concept(ont.2)

2. cluster s1= classifyInstances (c1, ab1 , selectedPropertySet S)

3. cluster s2= classifyInstances (c2, ab2 , selectedPropertySet S)

4. for each Category cid

5. if cid (clusterm ∈ cluster s1 clustern ∈ cluster s2

6. call IM=IM instanceMatch (clusterm, clustern, A)

7. return IM

 Figure 2. Scalable Instance Matching Algorithm

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 4 -

Fig. 2 describes our propose scalable algorithm for matching ins-

tances of large knowledge bases which works for each aligned

concepts pair given by our ontology schema matching Anchor-

flood algorithm (sec.2.3). Function classifyInstances classifies

the instances of a concept according to the selected properties

values. For a pair of common category we call our previous

algorithm instanceMatch (Fig.1). Finally, algorithm returns the

set of aligned instance pairs.

5. Experiment and Evaluation

 ISLab Instance Matching Benchmark is used for evaluation.

The test-bed provides OWL/RDF data about actors, sport persons,

and business firms. The main directory contains 37 sub-

directories and the original ABox and the associated TBox

(abox.owl and tbox.owl). Each sub-directory contains a modi-

fied ABox (abox.owl + tbox.owl) and the corresponding mapping

with the instances in the original ABox (refalign.rdf). The

benchmark data is divided into four major groups: value

transformation (001-010), structural transformation (011-019),

logical transformation (020-029) and combination transformation

(030-037).

 OAEI-2009 introduces instance matching track to the

participants. The following recall-precision graph (Fig.3) depicts

the performances of different systems where our Anchor-flood

(AFlood) algorithm works without considering the weight factors

of properties. Fig. 4 describes the improvement of our proposed

method over different transformation in comparison with

previous one. Here, we use the well known precision and recall

as measurement matrices. Moreover, our proposed one boasts for

less computational time.

Figure 3: Instance Matching Results in OAEI-2009 Campaign

Figure 4: Comparison of proposed method with previous one

6. Conclusion

 An efficient method of assigning automatic weight to each of

the property and addressing scalability issue to improve our

state-of–the-art ontology instance matching is presented. As

matching of instances are computing by considering the weight

factors of the properties associated to them, better outcomes in

terms of precision and recall are achieved. Though our scalable

algorithm takes some extra times for pre-processing, it reduces

the SLCs comparisons sufficiently. However, precision is also a

major concern when the sizes of datasets are increasing as our

algorithm matches the instances only if their concepts are aligned.

We will try to achieve further improvement by addressing the

same individual that resides in non-aligned concepts across

knowledge bases. Testing our algorithm with large knowledge

bases like Dbpedia and dblp as well as to fit it with LOD (Linked

Open Data) project are also our future concerns.

References

[1] T. Berners-Lee, M. Fischetti, M. Dertouzos, Weaving the
Web: The Original Design and Ultimate Destiny of the

World Wide Web, Harper San Francisco, 1999.
[2] R. Studer, V. Benjamins, D. Fensel, Knowledge

Engineering: Principles and Methods, Journal of Data &
Knowledge Engineering 25 (1-2) (1998) 161–197.

[3] M. Ehrig, Ontology Alignment: Bridging the Semantic Gap,
Springer, New York, 2007.

[4] M. H. Seddiqui, M. Aono, An Efficient and Scalable
Algorithm for Segmented Alignment of Ontologies of
Arbitrary Size, Journal of Web Semantics: Science, Services
and Agents on the World Wide Web, 2009

[5] M. H. Seddiqui, M. Aono, Anchor-Flood: Results for OAEI-
2009, Proceedings of Ontology Matching Workshop of the
8th International Semantic Web Conference, Chantilly, VA,
USA, 2009

[6] J. Tang, J. Li, B. Liang, X. Huang, Y. Li, K. Wang, Using
Bayesian decision for ontology mapping, Journal of Web
Semantics: Science, Services & Agents on the World Wide
Web, 2006

[7] Z. Wang, X. Zhang, L. Hou, Y. Zhao, J. Li, Y. Qi, J. Jang,
RiMOM Results for OAEI 2010, Proceedings of Ontology
Matching Workshop of the 9th International Semantic Web
Conference, Shanghai, china, 2010

[8] M. H. Seddiqui, S. Das, I. Ahmed, R.P.D. Nath, M. Aono,
Augmentation of Ontology Instance Matching by Automatic
Weight Generation, World congress on Communication and
Technology, India, IEEE, 2011

[9] A. Isaac, L. V. D. Meij, S. Schlobach, S. Wang, An
Empirical Study of Instance Based Ontology Matching,
ISWC/ASWC 2007

[10] S. Castano, A. Ferrara, D. Lorusso, S. Montanelli, On the
Ontology Instance matching Problem, 19th International
Conference on Database and Expert Systems Application ,
Italy, IEEE, 2008

[11] K. K. Breitman, D. Brauner, M. Casanova, A. Perazolo,
Instance-Based Ontology Mapping, Fifth IEEE Workshop
on Engineering of Autonomic and Autonomous systems,
IEEE, 2008

[12] M. H. Seddiqui, M. Aono, Ontology Instance Matching by
considering Semantic Link Cloud, Proceedings of 9th
WSEAS International Conf. on Applications of Computer
Engineering.2010

[13] W. E. Winkler, The State of Record Linkage and Current
Research Problems, Technical report, Statistical Research
Division, U.S. Census Bureau, Washington DC, 1999.

