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Ａ＊系の探索アルゴリズムは必要なメモリ領域が深刻な問題であると従来から考えられているが、クラウドの普及に
より、膨大なメモリ資源が利用可能になった。一方、計算機資源を使用すれば課金されるので、クラウド上の探索アルゴ
リズムは金銭コストを抑えつつ、高い解答能力を保つ必要がある。本研究では反復的に計算機資源を要求する手法（Ｉ
Ａ）を提案し、ＩＡの有効性を理論的及び実験的に実証する。

1. Introduction

[Note: This paper is a summary of [Fukunaga 12].]

Cloud computing resources such as Amazon EC2, which

offer computational resources on demand, have become

widely available in recent years. In addition to cloud com-

puting platforms, there is an increasing availability of mas-

sively parallel, high-performance computing (HPC) clus-

ters. These large-scale utility computing resources share two

characteristics that have significant implications for parallel

search algorithms. First, vast (practically unlimited) aggre-

gate, memory and CPU resources are available on demand.

Secondly, resource usage incurs a direct monetary cost.

Previous work on parallel search algorithms has focused

on makespan: minimizing the runtime (wall-clock time) to

find a solution, given fixed hardware resources; and scal-

ability: as resource usage is increased, how are makespan

and related metrics affected? However, the availability of

virtually unlimited resources at some cost introduces a new

context for parallel search algorithm research where an ex-

plicit consideration of cost-performance tradeoffs is nec-

essary. For scalable algorithms, it is possible to reduce

the makespan by allocating more resources (up to some

point). In practice, this incurs a high cost with diminishing

marginal returns. For parallel A* variants, under-allocating

resources results in memory exhaustion. On the other hand,

over-allocation is costly and undesirable.

We consider cost-efficient strategies for dynamically allo-

cating utility computing resources. We propose and analyze

iterative allocation, a simple strategy that repeatedly runs

a search algorithm with increasing resources until the prob-

lem is solved (Section 3.). Bounds on the cost incurred by

iterative allocation, compared to the optimal cost, are de-

rived (Section 4.). For a realistic class of utility computing

environments and search problems, the cost suboptimal-

ity of our policy is bounded by a constant factor as small

as 4. That is, we will never pay more than 4 times the

a priori unknown optimal price. We validate our analy-

sis experimentally by applying iterative allocation to the

HDA* [Kishimoto 09] algorithm (Section 5.). Results on
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classical planning and multiple sequence alignment prob-

lems, run on 3 distinct, massively parallel computing en-

vironments, indicate that the costs incurred by iterative

allocation are reasonably close to optimal, and significantly

better than the worst-case upper bounds.

2. Utility Computing Services

There are several types of utility computing services, in-

cluding clouds, grids, and shared, massively parallel clus-

ters. In all of these utility computing services, there is some

notion of an atomic (discrete) unit of resource usage.

Definition 1 (Hardware Allocation Unit). A hardware al-

location unit (HAU), is the minimal, discrete resource unit

that can be requested from a utility computing service.It is

characterized by a specific number of CPU cores and a given

amount of RAM, e.g., 4 cores and 8GB.

Various HAU types can be available, each with different

performance characteristics and cost.

Typical cloud services such as EC2 provision HAUs to the

user immediately upon request – there is a delay, usually

within 2 minutes, while the user’s VM image is allocated,

loaded and booted [Iosup 11]. Usage charges apply from

the time that the allocated VM enters a “running” state to

when it is stopped/terminated, regardless of the portion of

time spent on actual computations. HAUs can be dynami-

cally added to/removed from a running cluster.

In contrast, in HPC clusters, users typically submit jobs

to a centralized scheduler (resource manager), where a job

is a request (script) specifying an executable program and

the amount of resources to use. The scheduler decides when

the submitted job actually executes [Feitelson 97]. Usage

charges apply for the time consumed by the user’s job.

In a continuous cost model, the cost of resource usage is

a linear function of the amount of resources used. Batch

job based systems such as typical grid and shared cluster

environments usually adopt a continuous cost model. On

the other hand, currently, 3 of the largest commercial cloud

service providers (Amazon EC2, Windows Azure, Google

App Engine) all apply a discrete cost model in which all
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charges are per “HAU hour”. Usage of a HAU for any

fraction of an hour is rounded up, e.g., a 1 hour, 1 second

allocation of a HAU which costs $0.68/hr will cost $1.36.

3. Iterative Allocation

A scalable, ravenous algorithm is an algorithm (1) which

can be executed on an arbitrary number of processors,

and (2) whose memory consumption continually increases

until either a solution is found, or the algorithm termi-

nates (fails) due to memory exhaustion. For example,

HDA* [Kishimoto 09], a recent parallel variant of A*, is

a scalable, ravenous algorithm.

Algorithm 1 Generic, Iterative Allocation (IA)

numHAUs← 1
while true do

result← Run algorithm a on problem p
if result = solved then

return success
else

numHAUs← Increase(numHAUs)

The iterative allocation (IA) strategy outlined in Algo-

rithm 1 repeatedly runs a ravenous algorithm a until the

given problem is solved. This is very simple, but the key

detail is the Increase() function, which decides the num-

ber of HAUs to allocate in the next iteration. We seek a

policy for choosing the number of HAUs allocated on each

iteration of IA which tries to minimize the total cost.

3.1 Analysis of IA: Preliminaries
We present formal properties of the generic allocation

policy. For formal analysis, we make two assumptions.

Assumption 1 (Homogeneous hardware allocation units).

All HAUs used by IA are identical hardware configurations.

Assumption 2 (Monotonicity). If a problem is solved on

i HAUs, then it will be solved on j > i HAUs.

The cost to solve a problem is defined in terms of HAU-

hours. When the problem at hand can be solved on v HAUs,

let Tv be the makespan time needed to solve the problem.

In a continuous cost model, common in shared HPC clus-

ters,the cost of solving the problem on v HAUs is defined

as Tv × v.∗1 In a discrete cost model, common among com-

mercial cloud services, the cost is dTve × v. In the rest of

the paper, unless the cost model (continuous vs discrete) is

explicitly stated or clear from the context, our statements

apply to both models.

Definition 2. The minimal width W+ is the minimum

number of HAUs that can solve a problem with a given

ravenous algorithm. The cost incurred by using W+ HAUs

is denoted C+.

Definition 3. Given a cost model, the minimal cost width

W ∗ is the number of HAUs that results in a minimal cost.

∗1 Without loss of generality, we assume the cost per HAU-hour
to be 1, slightly simplifying the equations.

When several width values achieve the minimal cost, W ∗

refers to the smallest witdh with such a property. The min-

imal cost (i.e., the cost to solve the problem with W ∗ HAUs

in use) is written as C∗.

If W ∗ is known a priori, a cost-optimal strategy for solv-

ing the problem at hand is trivial: rentW ∗ HAUs in parallel

until the problem is solved. Most of time, however, W+ or

W ∗ are not known a priori. The best we can hope for is to

develop strategies that approximate the optimal values.

Definition 4 (Nonincreasing search efficiency). Given a

ravenous algorithm, we say that the search efficiency is

nonincreasing if the following two conditions hold: (1) If

nv is the number states generated using v HAUs, then

nv ≤ nv+1,∀v ≥ W+, and (2) Tvv ≤ Tv+1(v+1), ∀v ≥ W+.

As the number of HAUs increases, search efficiency typ-

ically decreases because of factors such as an increased

search overhead and communication overhead.

Proposition 1. In a continuous cost model, if the search

efficiency is nonincreasing, C∗ = C+ and W ∗ = W+.

In a discrete-cost model, the min-width cost C+ is not

necessarily the same as the minimal cost C∗. For example,

suppose that running a ravenous algorithm using 1 HAU

will exhaust memory, 2 HAUs can solve the problem in 1.3

hours (which is rounded up to 2 hours), and 3 HAUs can

solve the problem in 1 hour. In this case, the min-width is

W+ = 2, C+ = 4, but the min-cost C∗ = 3. However, the

gap between C∗ and C+ is relatively small:

Proposition 2. In a discrete cost model, if the search ef-

ficiency is nonincreasing, C+ < C∗ +W+.

Later, we shall see that under realistic conditions, W ∗ =

W+ and C∗ = C+ in a discrete cost model, regardless of

whether search efficiency is nonincreasing (Sec. 4.1).

Definition 5. The max iteration time E is the maximum

actual (not rounded up) time that an iteration can execute

before at least 1 HAU exhausts memory and fails.

The previous cost definitions are based on a fixed number

of HAUs. On the other hand, IA varies the number of HAUs

dynamically. In a continuous cost model, assuming that IA

allocates vi HAUs at iteration i, the cost incurred by IA

is I =
∑j

i=0
Dvivi. Dvi , with i < j, is the time taken to

fail for all but the last iteration. Dvj = svj is the time to

successfully complete the last iteration. In all cases, Dvi ≤
E. In a discrete cost model, times spent by individual HAUs

are rounded up. HAUs will use any spare time left at the

end of one iteration to start the next iteration. Thus, for

each HAU used in solving a problem, the total time spent

by that HAU across all iterations where it participated is

rounded up. The next example clarifies this further.

Example 1 (Cost computation in discrete cost model). A

doubling IA is executed: iteration 0 uses 1 HAU, iteration

1 uses 2 HAUs, iteration 2 uses 4 HAUs. In other words,
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one HAU is continuously used in all 3 iterations. One HAU

is used in the last two iterations, and two HAUs participate

only to the last iteration. The cost is $1 per HAU-hour.

Each failed iteration requires .33 hours. The last, successful

iteration requires .25 hours. The total cost is: 1 HAU ×
d.33+ .33+ .25e hours×$1+1 HAU×d.33+ .25e hrs×$1+

2 HAU× d.25e hrs× $1 = 1 + 1 + 2 = $4.

Definition 6 (Min-width cost ratio of a strategy). The

min-width cost ratio R+ is defined as I(S)/C+, where I(S)

is the cost of IA (using a particular allocation strategy S)

until the problem is solved, and C+ is the min-width cost.

Definition 7 (Min-cost ratio of a strategy). The min-cost

ratio R∗ is defined as I(S)/C∗, where C∗ is the min. cost.

4. The Geometric (bi) Strategy

Consider a simple strategy where the number of HAUs

allocated on the i-th iteration is dbie , for some b > 1. For

example, the 2i (doubling) strategy doubles the number of

HAUs allocated on each iteration: First, try 1 HAU; if it

fails, try 2 HAUs, then 4 HAUs, and so on.

Suppose the bi strategy solves a problem on the j-th it-

eration, i.e., j = dlogbW+e, where W+ is the min width.

The cost of a geometric allocation strategy with a con-

tinuous cost model is I =
∑j

i=0
Dbib

i. Recall that Dbj =

sbj ≤ E on the successful iteration, and Dbi ≤ E on

the failed iterations. By standard manipulations, I ≤
E bj−1

b−1
+ sbj b

j . In the discrete case, I ≤ dEe bj−1
b−1

+ dsbj ebj .
This latter upper bound is obtained by making the pes-

simistic relaxation that no spare time is used by a HAU

from one iteration to the next. This explains in part why

our experimentally measured cost ratios are better than the

theoretical upper bounds introduced later in this section.

We specialize the cost ratio analysis to a class of realistic

cloud environments and ravenous search algorithms.

4.1 Discrete Cost Model with Fast Memory
Exhaustion

Cloud platforms such as Amazon EC2 and Windows

Azure typically have discrete cost models, where the dis-

crete billing unit is 1 hour, and fractional hours are rounded

up. This relatively long unit of time, combined with the fast

rate at which search algorithms consume RAM, has signif-

icant practical implications:

Observation 1. Both the success time and the failure time

are at most 1 billing time unit (1 hour), Dk ≤ E ≤ 1,∀k ≥
1. A direct consequence is that dDke = dEe = 1,∀k ≥ 1.

Currently, the amount of RAM per core on EC2 and Win-

dows Azure ranges from 2 to 8.5 GB per core. Some of

the RAM in each core must be used for purposes other

than search state storage, e.g., the OS, MPI communica-

tion queue, and heuristic tables such as pattern databases.

Assume (optimistically) that we have 8 GB RAM remain-

ing after this “overhead” is accounted for. Suppose that

a state requires 50 bytes of storage overall in the system.

Generating at least 46,000 new states per second, which is

a relatively slow state generation rate, will exhaust 8 GB

RAM within an hour. Many search applications generate

states much faster than this.

Thus, many (but not all) search applications will exhaust

the RAM/core in a HAU within a single billing time unit

in modern cloud environments. A single iteration of IA will

either solve a given problem within 1 billing time unit, or

fail (due to RAM exhaustion) within 1 billing time unit.

Our experiments (Sec. 5.) validate Observation 1 for all

of our planning and sequence alignment benchmarks.

Observation 2. In a discrete cost model with E ≤ 1, the

cost to solve a problem on v HAUs is proportional to v. As

a direct consequence, W+ = W ∗ and thus R+ = R∗.

Remarkably, Observation 2 holds independently of

whether the search efficiency is nonincreasing (Definition 4).

Although we used Def. 4 to obtain general case results

(Propositions 1 and 2), under the stronger condition that

E ≤ 1, all of the results below hold regardless of whether

the search efficiency is nonincreasing.

The cost overhead of IA consists of two components: (1)

unnecessary HAUs allocated on the final, successful iter-

ation, and (2) repeated allocation of HAUs due to failed

iterations. When the min-width happens to be a power of

b, then the former overhead is 0. In a discrete pricing model,

the latter overhead can be reduced significantly when iter-

ations terminate faster than a single billing unit, and thus

u iterations fit in v < u billing units. Furthermore, with

a sufficiently small E, all iterations can be executed within

a single billing time unit, entirely eliminating the repeated

allocation cost overhead. Indeed, in our experiments below,

for all our planning benchmark problems, all iterations fit

in a single billing time unit.

The worst case for the min-cost ratio R+ = R∗, occurs

when when the (j−1)-th iteration is barely insufficient, and

on the final j-th iteration, only W+ = bj−1 + 1 HAUs (out

of the bj allocated) are necessary:

R∗
wo = R+

wo = I
ds

W+e(bj−1+1)
≤ b2

b−1

(See [Fukunaga 12] for derivation, as well as average case

bound).

Observation 3. When E ≤ 1, the worst case bound b2/(b−
1) is minimized by the doubling strategy (b = 2).

As b increases above 2, making the iterative allocation

more aggressive, the upper bound for R∗
avg improves, but

the worst case gets worse. Therefore: the simple, doubling

strategy is the natural allocation policy to use in practice.

Note that for the doubling strategy (2i), the worst case

cost ratio does not exceed 4. In other words, with the simple

doubling strategy in a discrete cost model when E ≤ 1, we

will never pay more than 4 times the optimal cost that we

would have paid if we knew the optimal width in advance.

5. Experimental Results

We experimentally evaluate iterative allocation applied

to HDA* (IAHDA*). We focus on the doubling strategy,
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# Cores & Max # Continuous Model Discrete Model

(RAM) per HAUs number of problems solved on iteration Min-Width Cost Ratio (R+) Min-Cost Ratio (R∗)
HAU (cores) 2 3 4 5 6 7 Total Mean SD Max Mean SD Max

Planning: HPC 12(54GB) 64(768) 2 5 11 3 3 1 25 2.18 0.45 3.34 1.29 0.27 1.88
Planning: Commodity 8(16GB) 8(64) 5 1 2 - - - 8 1.62 0.29 2.29 1.04 0.12 1.33
Planning: EC2 4(15GB) 16(64) 6 1 1 5 - - 13 1.63 0.25 2.27 1.26 0.25 1.64
Mult. Seq. Align: HPC 12(54GB) 64(768) 4 1 - 1 - 2 8 2.02 0.46 2.76 1.54 0.75 3.28

表 1: Summary of IAHDA* on planning and multiple sequence alignment on HPC, Commodity, and EC2 clusters.

for the reasons outlined in the previous section. Domain-

independent planning and multiple sequence alignment

problems are solved on 3 parallel clusters: (1) HPC - a large-

scale, high-performance computing cluster, where each

HAU has 12 cores (Intel Xeon 2.93GHz), 4.5GB RAM/core,

and a 40GB Infiniband network. (2) Commodity - a cluster

of commodity machines, where each HAU has 8 cores (Xeon

2.33GHz) and 2GB RAM/core, and a 1Gbps (x3, bonded)

Ethernet network. (3) EC2 - Amazon EC2 cloud cluster us-

ing the m1.xlarge (“Extra Large” instance) HAU, which

have 4 virtual cores, (3.75GB RAM per core, and an un-

specified network interconnect).

We evaluated IAHDA* for domain-independent plan-

ning on a Fast-Downward based planner using the merge-

and-shrink (M&S) heuristic [Helmert 07]. We use 7

standard benchmark domains: Depot, Driverlog, Free-

cell, Logistics, Mprime, Pipesworld-Notankage, Pipesworld-

Tankage (142 problems total). We also evaluated IAHDA*

on multiple sequence alignment (MSA) using the vari-

ant of HDA* in [Kobayashi 11], without the weighted-A*

preprocessing/upper-bounding. The test set consisted of 28

standard alignment problems for 5-9 sequences (HPC only).

For each problem, on each cluster, the min-width W+

was found by incrementing the number of HAUs until the

problem was solved. We evaluate the data under both the

continuous and discrete cost models: For both the continu-

ous and discrete models, we computed the min-width cost

ratio R+. In the discrete model, we assume the industry

standard 1 hour granularity. In all our test problems, max

iteration time E (Def 5) turns out to be less than 1 hour.

Thus, by Observation 2, discrete R∗ = R+ (the number of

HAUs which minimizes cost is equal to min-width).

Table 1 summarizes the results. For all 3 clusters, we

only consider problems which required ≥ 2 iterations on

that cluster. For each system, we show how many prob-

lems were solved using exactly i iterations for each 2 ≤ i ≤
log2(Max#HAU’s), as well as the total number of problems

solved using ≥ 2 iterations. For both the continuous and

discrete cost models, we show the mean, standard devia-

tion, min, and max values of the min-width cost ratio R+

or min-cost ratio R∗ (see above). See [Fukunaga 12] for

detailed results.

From the experimental results (Tables 1), we observe:

(a) The mean discrete min-cost ratios R∗ for all problems,

on all 3 clusters (Table 1) is significantly less than the the-

oretical worst case bound (4.0) for the doubling strategy

(Sec. 4.1); The continuous min-width cost ratio R+ was

never higher than 3.34.

(b) For all our benchmarks, E < 1, satisfying the conditions

of Sec. 4.1. On all planning problems, all iterations were

performed within a single billing time unit (hour). Fur-

thermore, on some problems, W ∗ is a power of 2, and the

discrete R∗ = 1.0, i.e., no additional cost was incurred by

IA, compared to the optimal (minimal) cost.

6. Discussion and Conclusions

This paper explored some implications of having access

to vast (but costly) resources for parallel search algorithms.

We analyzed a general, iterative resource allocation strategy

for scalable, memory-intensive search algorithms, including

parallel A* variants such as HDA*. We presented bounds

on the relative cost of a simple, geometric allocation policy,

compared to an (a priori unknown) optimal allocation. Un-

der realistic assumptions and a discrete pricing model used

in commercial clouds such as Amazon EC2 and Windows

Azure, we showed that the worst case cost ratios for a dou-

bling strategy was at most 4 (the average case bound is 2.67

– see [Fukunaga 12]). Experiments with planning and se-

quence alignment validated the theoretical predictions, and

showed that the cost ratios can be quite low, showing that

IA with a doubling policy is a reasonable strategy in prac-

tice. While our experiments applied IA to HDA*, our theo-

retical analysis is quite general, and applies to any scalable,

ravenous algorithm that satisfies the assumptions, includ-

ing, for example, scalable work-stealing A*.
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