
The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 1 -

Community Driven Search Engine Based on Community's Proxy Server Log

Guntur Dharma Putra
*1

 Ferry Astika Saputra
*2

 Kenzi Watanabe
*3

*1Graduate School of Science and

Engineering, Saga University

*2Department of Information

Technology, Electronic Engineering

Polytechnic Institute of Surabaya

*3Graduate School of Science and

Engineering, Saga University

In this paper, we are introducing a method to improve search engine capabilities by using user preference achieved with the help of

community's proxy logs. The goal is focused to build a custom search engine that providing community-specific results. To achieve such

search engine, we use proxy server logs from Network Operation Center of EEPIS-ITS and fetch the unique URL and user field as raw

data. Getting the needed data, then we crawl the title and meta information from all of the unique URLs. Then, document vector is created
in order to make those textual data turn into a machine-friendly numerical data. To find the topic, based on those URLs and its meta

information, we cluster it into 10 or more preferable clusters using k-means algorithm. Those results, finally, would be our base to create

the search engine and we use vector space model to provide a search result from user's query.

1. Introduction

Search engine is a key tool for finding information in World

Wide Web (WWW). According to the performed research

studies, number of web sites on the Internet is above 156 million

[Yalçin 10]. Thus, the exponential growth of the number of

WWW users and its application as well as the rapid growth of

WWW objects makes though challenges to all search engines.

Typical search engines provide the same results for a given

query independent of the user or the situation in which the query

is being issued [Almeida 04, Taghavi 11]. As a result, some of

users will be unsatisfied because the relevance of each

information retrieved is highly independent in the context in

which query is entered. For example, results for the query

"Squid" will depend whether the user is seeking information

about a marine creature or interested on the technology of web-

caching server. This might be happen because of the original

design of the search engines are built to provide answers to all

query requests regardless who the users are. But in fact, when

users post their query, they send their personal information about

their interest [Taghavi 11].

Web-caching servers are widely used in some developing

countries in order to seek a way out of limited internet bandwidth

problem by reducing access time and bandwidth requirements

[Taghavi 11]. Those servers which are usually used in every

community are unexpectedly keeping user’s information within

its server log. Having that proxy logs, actually we could extract

user preferences by processing those logs and extracting any

useful information.

In this work, we use that opportunity to improve search engine

capabilities by user preference achieved with the help of

community's proxy logs. Nevertheless, our work is limited to

building the search engine only and there was no further testing

or performance comparison yet.

The rest of this paper is organized as follows: Section 2

reviews related works. The data and methodology are

comprehensively explained in section 3, while section 4

describes the system design overview. Finally, concluding

remarks and future work are drawn in section 5.

2. Related Works

Within the context of community related search engine topic,

for example, a community-aware search engine research

[Almeida 04] was carried out in order to make answers to a query

become dependent to specific user information need. A novel

ranking technique that combines content-based and community-

based evidences are used along with the theory of Bayesian

belief networks for approaching their goals.

Whilst Almeida’s aim to conduct a community-aware search

engine is comparably identical with our intention to improve

search engine capabilities so it would be making the satisfaction

of the user goes up, we are adopting different approach to

achieve that aim. Proxy server log processing was extensively

used to extract user preference on a community.

Moreover, proxy log processing and analysis were also being

researched with query distribution approach for search engine

[Taghavi 11]. That research results could be used to develop long

to short term business plans for search engine service providers.

3. The Data and Methodology

3.1 The Data

This work was carried out with logs of web-caching server,

Squid, collected from Network Operation Center of EEPIS-ITS

(Electronics Engineering Polytechnic Institute of Surabaya –

Institut Teknologi Sepuluh November), Indonesia. Log files from

3 servers, which are serving as web proxy HTTP server, are

collected during a period spanning from August 2011 up to

November 2011. This data simply represents the community of

EEPIS-ITS campus, Indonesia.

The log files used for this work were derived from Squid’s

access.log file. Those logs contain 10 fields whilst only 2 of

them were used in order to extract user preferences:

 URL: The URL (Uniform Resource Locator) is a

global address for specifying the location of a

resource or a transaction. In this work we only

parsed the URL up to the TLD (Top-level domain).

 RFC931: The field contains username who send the

requests to the proxy server.
Contact: Kenzi Watanabe, Graduate School of Science and

Engineering, Saga University, +81-952-28-8828,

watanabe@is.saga-u.ac.jp

1C1-R-5-1

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 2 -

3.2 The methodology

(1) Processing the proxy logs and crawling meta

information

This work requires a comprehensive processing of proxy logs

in order to extract user’s information from raw data. As

described above, the needed information is just the URL and

RFC931 field. Then we would crawl the meta information of

those URLs.

Fig. 1. List of URLs that are pointing to www.facebook.com.

In the real parsing process, there would be lots of URLs that

are just pointing to a same URL. That is just simply because lots

of components contained within a web page are coming from

multiple sources [Yalçin 10].

If only we crawl the meta information from those one pointing

URLs, in fact, we got null result and only one of them has the

meta information. Thus, those URLs mean nothing and we could

wipe all of those unimportant URLs out and just important URLs

still remain. In order to achieve it, we implemented white and

black-list filtering mechanism:

Fig. 2. White and black-list filtering flowchart.

The prior process (filtering) would result a list of important

URLs and we could continue to further process of crawling the

meta information.

(2) Document Vector and TF-IDF weighting scheme

The TF-IDF (Term Frequency-Inverse Document Frequency)

weighting scheme is a numerical statistic which reflects how

important a word is to a document in a collection or corpus.

While in this work, we have collections of URLs that are simply

representing collections of documents. Each of those documents

has its own meta information or collection of words.

Before applying TF-IDF weighting scheme, we have to give

those data some treatments:

Fig. 3. Document vector processing flowchart.

Then the TF-IDF is calculated as:

)1(

0,0

0,log))log(1(
),(

,

,

,

,














ji

ji

ji

ji

tfif

tfif
uf

N
tf

jiweight

tfi,j is the number of occurrences of word wi in URL uj, while

ufi,j is the number of URLs in the collection in which wi occurs in.

Having all URLs calculated using the TF-IDF formula, then

those numerical values are converted into a matrix M(word, url) that

later would be used for clustering using k-means algorithm and

for the vector space model.

(3) k-means and Vector Space Model

The Vector Space Model is commonly used structured form

for text data in which individual text documents are represented

as a set of vectors [Jing 06]. Later the matrix M would be

converted into single vector V(word) so that those collection of

words could be clustered using k-means algorithm. Converting

process involves algebraic model of Vector Space Model. Then

the vector is calculated as such:

)2(
1

,



n

j

jii MV

K-means clustering process will use that vector’s values. Then

the result of clustering would be our base for grouping the URLs

which could be categorized in the same cluster. The k-means

algorithm flowchart is as follows:

Fig. 4. K-means algorithm flowchart.

(4) Vector similarity

To do retrieval in the vector space model, documents are

ranked according to similarity with the query as measured by the

cosine measure or normalized correlation coefficient. Thus,

every document in this collection of documents would be

measured the similarity with the search query requested by users.

http://0.7.channel.facebook.com/

http://www.facebook.com/

http://0.124.channel.facebook.com/

www.facebook.com

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 3 -

Firstly, user’s query would be treated as a single document and

weighted using the same TF-IDF formula (1) as the URLs were

computed. Getting the result, those 2 vectors (query Q and each

URLs D) measured by using vector similarity:

)3(

)(*)(

*

),(

1 1

22

1

 



 


n

i

n

i

diqi

n

i

diqi

WW

WW

DQsim

Wqi is the weight of word Wi in the query Q, while Wdi is the

weight of word Wi in the URL D (meta information).

The most similar vector, in this case is URL, would have the

highest value of formula 3. Finally, the search engine result

would be derived from formula 3 written above.

4. System Design Overview

The overall system design is described in the following

scheme:

Fig. 5. The overview of our system design.

4.1 The processing Unit

The processing unit, described in the picture as A, plays a role

in preparing data needed for the local search engine (D). The

processing unit would extract URL and RFC931 field from the

Squid access.log files, then crawl the meta information of each

extracted URL, and finally create a document vector of those

crawled data in order to transform those textual data into

numerical data. Later on, those prepared data would be tidily

stored in the document database (B) for further process.

4.2 Updating Scheme

The document database would be updated in a 24-hour period

corresponds to the Squid access.log files that is also updated

every day, and that is scheduler (C) work for. In the updating

scheme, in order not to duplicate the URLs that have been listed

on the database, we did some tricky steps:

Fig. 6. URL updating scheme flowchart.

Later the new URL list will be re-crawled in order to get new

meta information and create a new document vector.

4.3 Local search engine

Firstly, local search engine (D) would extract saved data in

document database (B) and measure the similarity between user’s

query and every document as mentioned in chapter 4.4. To rank

the URL in the search result page shown as the final result to the

user, local search engine uses calculated vector similarity and

URL’s TF-IDF value as described in the following graph:

Fig. 7. Ranking algorithm flowchart.

5. Concluding Remarks and Future Work

In this work, we presented a community driven search engine

which its goal is to provide more specific results than the

ordinary search engines do. Although we did not compare our

community customized search engine with the search engine in

the real daily live, we showed that it is possible to create a

custom community driven search engine from community’s

proxy server log.

In order to improve this community driven search engine’s

capabilities, there are some works that could be carried out

particularly:

 Considering a deeper user’s query treatment,

including a query recommendation, spelling and

grammar check.

 Benchmarking this community driven search engine

with the search engine on the market would be

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 4 -

particularly important to check this search engine

performance.

 To check whether this community search engine

runs smoothly and provides exactly what those

communities want could be benchmarked using

different proxy server logs provided from different

communities.

 Using other approaches for modeling the user

preference from the communities, such as the theory

of Bayesian belief networks, could be carried out in

order to perform a further research.

Acknowledgments

The authors would like to thank to Mr. Idris Winarno as the head

of Network operation Center of EEPIS for giving access to the

real proxy data.

References

[Taghavi 11] M. Taghavi, et al., An analysis of web proxy logs

with query distribution pattern approach for search engines,

Comput. Stand. Interfaces (2011),

doi:10.1016/j.csi.2011.07.001

[Yalçin 10] N. Yalçin, U. Köse, What is search engine

optimization: SEO, Proceeding of the 2010 World

Conference on Learning, Teaching, and Educational

Leadership, Elsevier, 2010.

[Lambert 09] F. Lambert, Online community information

seeking: The queries of three communities in Southwestern

Ontario, Journal of Information Processing and Management,

Elsevier, 2009.

[Jing 06] L. Jing, et al., A Text Clustering System based on k-

means Type Subspace Clustering and Ontology, International

Journal of Electrical and Computer Engineering, 2006.

[Yates 04] R. B. Yates, C. Hurtado, M. Mendoza, Query

Recommendation Using Query Logs in Search Engines,

EDBT 2004 Workshops, LNCS 3268, pp. 588–596, 2004.

[Almeida 04] R. B. Almeida, V. A. F. Almeida, A Community-

Aware Search Engine, Proceeding of the 2004 World Wide

Web Conference, 2004.

